首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于风力机叶片增功装置设计要求,以NREL 5 MW叶片为设计原型,以扭角、上反角及后掠角3种小翼外形参数为优化因素设计正交试验表,每种因素分别选取4个水平值,采用计算流体力学(CFD)方法对加装16种不同构型小翼的叶片进行数值模拟。计算结果表明,叶片整体可增功约1.466%,同时推力增加约1.570%;影响扭矩的最主要因素为扭角,影响推力的最主要因素为上反角;通过分析叶片近尾迹流场发现,优化的叶尖小翼布局可改变叶片叶尖涡强度分布,调整叶尖翼型截面气动力特性,进而改善叶片气动性能。  相似文献   

2.
Most modern high-power wind turbines are horizontal axis type with straight twisted blades. Upgrading power and performance of these turbines is considered a challenge. A recent trend towards improving the horizontal axis wind turbine (HAWT) performance is to use swept blades or sweep twist adaptive blades. In the present work, the effect of blade curvature, sweep starting point and sweep direction on the wind turbine performance was investigated. The CFD simulation method was validated against available experimental data of a 0.9?m diameter HAWT. The wind turbine power and thrust coefficients at different tip speed ratios were calculated. Flow field, pressure distribution and local tangential and streamwise forces were also analysed. The results show that the downstream swept blade has the highest Cp value at design point as compared with the straight blade profile. However, the improvement in power coefficient is accompanied by a thrust increase. Results also show that the best performance is obtained when the starting blade sweeps at 25% of blade radius for different directions of sweep.  相似文献   

3.
In this study, the aerodynamic noise characteristics of Savonius wind turbines were investigated using hybrid computational aero-acoustics techniques, and low-noise designs were proposed based on the understanding of the noise generation mechanism. First, the flow field around the turbine was analyzed in detail by solving three-dimensional unsteady incompressible Reynolds-averaged Navier–Stokes equations using computational fluid dynamics techniques. Then, the aerodynamic noise radiating from the wind turbine was predicted using the Ffowcs Williams and Hawkings equation with the obtained flow field information. Two distinct harmonic noise components—the blade passing frequency (BPF) and harmonics with a fundamental frequency that is much higher than the BPF—were identified in the predicted noise spectrum. The origin of the higher harmonic components was found to be related to vortex shedding from the rotating turbine. Based on this finding, the proposed low-noise design for Savonius wind turbines uses S-shaped blades. S-shaped blades were found to reduce the noise levels of Savonius wind turbines by up to 2.7 dB.  相似文献   

4.
This paper demonstrates the application of combined analytical/FEA coupled aero-structure simulation in design of bend-twist adaptive blades. A genetic algorithm based design tool, in which the power curve is predicted through a combined coupled aero-structure simulation, has been developed. A bend-twist adaptive blade has been designed to be used on the rotor of a constant speed stall regulated wind turbine. The bend-twist adaptive blade is assumed to be made out of anisotropic composite materials. The designed blade has the same aerofoil and chord distribution as the original blade used on the wind turbine, but with a different pre-twist distribution. The simulated results show a significant improvement in the average power of the studied stall regulated wind turbine when employing the designed adaptive blades.  相似文献   

5.
基于叶素动量理论分析了小型风力机的气动性能分析模型,并提出了叶片的气动优化设计方法.结合叶片制造和应用中的实际要求,设计了10 kW小型变桨距风力机叶片的气动外形.计算结果表明,设计叶片具有良好的气动性能,验证了该设计方法有效实用.  相似文献   

6.
Horizontal axis wind turbines (HAWTs) experience three‐dimensional rotational and unsteady aerodynamic phenomena at the rotor blades sections. These highly unsteady three‐dimensional effects have a dramatic impact on the aerodynamic load distributions on the blades, in particular, when they occur at high angles of attack due to stall delay and dynamic stall. Unfortunately, there is no complete understanding of the flow physics yet at these unsteady 3D flow conditions, and hence, the existing published theoretical models are often incapable of modelling the impact on the turbine response realistically. The purpose of this paper is to provide an insight on the combined influence of the stall delay and dynamic stall on the blade load history of wind turbines in controlled and uncontrolled conditions. New dynamic stall vortex and nonlinear tangential force coefficient modules, which integrally take into account the three dimensional rotational effect, are also proposed in this paper. This module along with the unsteady influence of turbulent wind speed and tower shadow is implemented in a blade element momentum (BEM) model to estimate the aerodynamic loads on a rotating blade more accurately. This work presents an important step to help modelling the combined influence of the stall delay and dynamic stall on the load history of the rotating wind turbine blades which is vital to have lighter turbine blades and improved wind turbine design systems.  相似文献   

7.
One serious challenge of energy systems design, wind turbines in particular, is the need to match the system operation to the variable load. This is so because system efficiency drops at off‐design load. One strategy to address this challenge for wind turbine blades and obtain a more consistent efficiency over a wide load range, is varying the blade geometry. Predictable morphing of wind turbine blade in reaction to wind load conditions has been introduced recently. The concept, derived from fish locomotion, also has similarities to spoilers and ailerons, known to reduce flow separation and improve performance using passive changes in blade geometry. In this work, we employ a fully coupled technique on CFD and FEM models to introduce continuous morphing to desired and predetermined blade design geometry, the NACA 4412 profile, which is commonly used in wind turbine applications. Then, we assess the aerodynamic behavior of a morphing wind turbine airfoil using a two‐dimensional computation. The work is focused on assessing aerodynamic forces based on trailing edge deflection, wind speed, and material elasticity, that is, Young's modulus. The computational results suggest that the morphing blade has superior part‐load efficiency over the rigid NACA blade. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
To predict the unsteady aerodynamic loads of horizontal-axis wind turbines (HAWTs) during operations under yawing and pitching conditions, an unsteady numerical simulation method is proposed. This method includes a nonlinear lifting line method to compute the aerodynamic loads on the blades and a time-accurate free-vortex method to simulate the wake. To improve the convergence property in the nonlinear lifting line method, an iterative algorithm based on the Newton–Raphson method is developed. To increase the computational efficiency and the accuracy of the calculation, a new wake vortex model consisting of the vortex core model, the vortex sheet model and the tip vortex model is used. Wind turbines with different diameters, such as NREL Phase VI, the TU Delft model turbine and the Tjæreborg wind turbine, are used to validate the method for rotors operating at given yaw and/or pitch angles and during yawing and/or pitching processes at different wind speeds. The results, including the blade loads, the rotor torque and the locations of the tip vortex cores in the wake, agree well with the measured data and the computed data. It is shown that the proposed method can be used for predictions of unsteady aerodynamic loads and rotor wakes in the operational processes of blade pitching and/or rotor yawing.  相似文献   

9.
一种水平轴风轮叶片的气动设计方法   总被引:10,自引:0,他引:10  
发展了两种先进的水平轴风轮叶片气动计算和设计方法-PROPGA和PROPID,PROPGA是基于最优化方法的遗传算法,用于最初的叶片选择和几何设计;PROPID是一种基于反问题的叶片气动设计方法,用于最后的叶片造型和性能预估。给出了两个实例,一个是以基础科学研究为目的实验探索用全新风轮,另一个则是用于商业生产的小型风轮。在实际风轮设计中的成功使用证明,PROPID和PROPGA是一种强有力的设计工具,两者的结合使用可以得到最佳的风力涡轮气动性能。  相似文献   

10.
叶片是风力机最重要的组成部分,在不同的风能资源情况下,翼型的选择对垂直轴风力机气动特性有着重要的影响。文章分别以NACA0018翼型(对称翼型)和NACA4418翼型(非对称翼型)建立3叶片H型垂直轴风力机二维仿真模型。应用数值模拟的研究方法,从功率系数、单个叶片切向力系数等方面比较两种风力机模型在不同叶尖速比下的气动特性,并采用风洞实验数据验证了流场计算的准确性。CFD计算结果表明:在低叶尖速比下,NACA4418翼型风力机气动特性优于NACA0018翼型风力机,适用于低风速区域;在高叶尖速比下,NACA0018翼型风力机气动特性较好,适用于高风速地区。而且在高叶尖速比时,NACA0018翼型在上风区时,切向力系数平均值要高于NACA4418翼型,在下风区时,NACA418翼型切向力系数平均值高。该研究可为小型垂直轴风力机翼型的选择提供参考。  相似文献   

11.
This paper presents a model to optimize the distribution of chord and twist angle of horizontal axis wind turbine blades, taking into account the influence of the wake, by using a Rankine vortex. This model is applied to both large and small wind turbines, aiming to improve the aerodynamics of the wind rotor, and particularly useful for the case of wind turbines operating at low tip-speed ratios. The proposed optimization is based on maximizing the power coefficient, coupled with the general relationship between the axial induction factor in the rotor plane and in the wake. The results show an increase in the chord and a slightly decrease in the twist angle distributions as compared to other classical optimization methods, resulting in an improved aerodynamic shape of the blade. An evaluation of the efficiency of wind rotors designed with the proposed model is developed and compared other optimization models in the literature, showing an improvement in the power coefficient of the wind turbine.  相似文献   

12.
This paper presents a method for decoupled design of bend-twist adaptive blades (BTABs) in which the aerodynamic and structural designs take place separately. In this approach the induced twist is considered as an aerodynamic design parameter, whilst its dependency on the structural characteristics of the blade is taken into account by imposing a proper constraint on the structure design. The main advantage of this method is the significant reduction in evaluation time by replacing a finite element analysis (FEA)-based coupled-aero-structure (CAS) simulation in the aerodynamic objective evaluation by a non-FEA-based CAS simulation. Through a re-design case study an ordinary blade has been converted to a BTAB and the efficiency of the method in performing decoupled design of BTABs has been illustrated.  相似文献   

13.
Most blades available for commercial-grade wind turbines incorporate a straight, span-wise profile and airfoil-shaped cross-sections. These blades are found to be very efficient at low and medium wind speeds compared with the potential energy that can be extracted. This paper explores the possibility of increasing the efficiency of the blades by modifying the blade design to incorporate a swept edge. The design intends to maintain efficiency at low to medium wind speeds by selecting the appropriate orientation and size of the airfoil cross-sections based on an oncoming wind speed and given constant rotation rate. The torque generated from a blade with straight-edge geometry is compared with that generated from a blade with a swept edge as predicted by CFD simulations. To validate the simulations, the experimental curve of the NTK500/41 turbine using LM19.1 blades is reproduced using the same computational conditions. In addition, structural deformations, stress distributions and structural vibration modes are compared between these two different turbine blade surfaces.  相似文献   

14.
The accurate prediction of the aerodynamics and performance of vertical‐axis wind turbines is essential if their design is to be improved but poses a significant challenge to numerical simulation tools. The cyclic motion of the blades induces large variations in the angle of attack of the blades that can manifest as dynamic stall. In addition, predicting the interaction between the blades and the wake developed by the rotor requires a high‐fidelity representation of the vortical structures within the flow field in which the turbine operates. The aerodynamic performance and wake dynamics of a Darrieus‐type vertical‐axis wind turbine consisting of two straight blades is simulated using Brown's Vorticity Transport Model. The predicted variation with azimuth of the normal and tangential force on the turbine blades compares well with experimental measurements. The interaction between the blades and the vortices that are shed and trailed in previous revolutions of the turbine is shown to have a significant effect on the distribution of aerodynamic loading on the blades. Furthermore, it is suggested that the disagreement between experimental and numerical data that has been presented in previous studies arises because the blade–vortex interactions on the rotor were not modelled with sufficient fidelity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Prediction of ice shapes on a wind turbine blade makes it possible to estimate the power production losses due to icing. Ice accretion on wind turbine blades is responsible for a significant increase in aerodynamic drag and decrease in aerodynamic lift and may even cause premature flow separation. All these events create power losses and the amount of power loss depends on the severity of icing and the turbine blade profile. The role of critical parameters such as wind speed, temperature, liquid water content on the ice shape, and size is analyzed using an ice accretion prediction methodology coupled with a blade element momentum tool. The predicted ice shapes on various airfoil profiles are validated against the available experimental and numerical data in the literature. The error in predicted rime and glime ice volumes and the maximum ice thicknesses varies between 3% and 25% in comparison with the experimental data depending on the ice type. The current study presents an efficient and accurate numerical methodology to perform an investigation for ice‐induced power losses under various icing conditions on horizontal axis wind turbines. The novelty of the present work resides in a unified and coupled approach that deals with the ice accretion prediction and performance analysis of iced wind turbines. Sectional ice profiles are first predicted along the blade span, where the concurrence of both rime and glaze ice formations may be observed. The power loss is then evaluated under the varying ice profiles along the blade. It is shown that the tool developed may effectively be used in the prediction of power production losses of wind turbines at representative atmospheric icing conditions.  相似文献   

16.
风力机大型化已成为风电技术发展的主要趋势。但随之而来的叶片尺寸增大、气弹特性增强、多尺度流动等问题将导致叶片处于更加复杂严峻的风况及载荷环境。为提高叶片应对复杂风况及载荷的能力,提高叶片气动效率,有必要采用先进有效的流动控制技术以满足叶片气动降载与流动分离控制的需求。针对当前主流的流动控制技术进行了介绍,并对较具发展潜力的尾缘襟翼与自适应襟翼研究现状进行了重点介绍。现阶段流动控制技术并未在风力机叶片中得到广泛应用,一方面在于流动控制技术尚难与叶片现有主体控制技术相结合,以达到相辅相成的控制效果;另一方面在于对于部分控制技术,如自适应襟翼等,其控制特点尤其是其在风力机实际运行中的控制特点尚不明确。后续研究中,对于叶片气动降载,应结合更为先进的控制方法与更可靠的研究手段开展尾缘襟翼控制与叶片主体控制的协同控制研究;对于流动分离控制技术,应侧重于改善被动控制技术在非适用工况下的不良影响,同时开展流动控制技术在整机中的实验与数值研究,加快流动分离控制技术的实际应用。  相似文献   

17.
Based on an unperturbed airflow assumption and using a set of validated modelling methods, a series of activities were carried out to optimise an aerodynamic design of a small wind turbine for a built up area, where wind is significantly weaker and more turbulent than those open sites preferable for wind farms. These activities includes design of the blades using a FORTRAN code; design of the nose cones and nacelles, which then constituted the rotor along with the blades; optimisation of the rotor designs in the virtual wind tunnel developed in the first part of the study; and finally, estimation of the annual power output of this wind turbine calculated using hourly wind data of a real Scottish Weather Station. The predicted annual output of the finalised rotor was then compared with other commercial turbines and result was rather competitive.  相似文献   

18.
The aerodynamic characteristics of wind turbines are closely related to the geometry of their blades. The innovation and the technological development of wind turbine blades can be centred on two tendencies. The first is to improve the shape of existing blades; the second is to design new shapes of blades. The aspiration in the two cases is to achieve an optimal circulation and hence enhancing some more ambitious aerodynamic characteristics. This paper presents an inverse design procedure, which can be adapted to both thin and thick wind turbine blade sections aiming to optimise the geometry for a prescribed distribution of bound vortices. A method for simulating the initial contour of the blade section is exposed, which simultaneously satisfy the aerodynamic and geometrical constraints under nominal conditions. A detailed definition of the function characterising the bound vortex distribution is presented. The inviscid velocity field and potential function distributions are obtained by the singularities method. In the design method implemented, these distributions and the circulation of bound vortices on the camber line of the blade profile, are used to rectify its camber in an iterative calculation leading to the final and optimal form of the blade section once convergence is attained. The scheme proposed has been used to design the entire blade of the wind turbine for a given span-wise distribution of bound circulation around the blade contour.  相似文献   

19.
新型双风轮风力机气动特性的三维流场数值模拟   总被引:1,自引:0,他引:1  
基于Simplic算法,采用SST κ-ω湍流模型,利用Fluent6.3数值模拟软件对新型的小型双风轮风力机的气动特性进行了三维流场研究,并与同规格单风轮风力机的三维流场进行了比较.结果表明:与单风轮风力机相比,随着后风轮叶片数目的增加,新型双风轮风力机的湍流强度变大,风力机运行的稳定性在一定程度上有所降低;当后风轮的叶片数目合理时,后风轮对前风轮的影响较小,且可以有效地捕捉到前风轮的漏风,使得新型双风轮风力机的风轮在获得较大迎风面积的同时可以保持较高的转速,进而能够高效地实现风能的两级利用,明显提高发电功率和增大风能利用系数.  相似文献   

20.
The prospect of installing blades that twist as they bend and/or extend on horizontal axis wind turbines provides opportunities for enhanced energy capture and/or load mitigation. Although this coupling could be achieved in either an active or a passive manner, the passive approach is much more attractive owing to its simplicity and economy. As an example, a blade design might employ coupling between bending and twisting, so that as the blade bends owing to the action of the aerodynamic loads, it also twists, modifying the aerodynamic performance in some way. For reducing loads the blades are designed to twist towards feather as they bend. For variable‐speed pitch‐controlled rotors, dynamic computer simulations with turbulent inflow show that twist coupling substantially decreases fatigue damage over all wind speeds, without reducing average power. Maximum loads also decrease modestly. For constant‐speed stall‐controlled and variable‐speed stall‐controlled rotors, significant decreases in fatigue damage are observed at the lower wind speeds and smaller decreases at the higher wind speeds. Maximum loads also decrease slightly. As a general observation, whenever a rotor is operating in the linear aerodynamic range (lower wind speeds for stall control and all wind speeds for pitch control), substantial reductions in fatigue damage are realized. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号