首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, with the upgrading of mobile positioning and the popularity of smart devices, location related research gets a lot of attentions. One of popular issues is the trip planning problem. Although many related scientific or technical literature have been proposed, most of them focused only on tourist attraction recommendation or arrangement meeting some user demands. In fact, to grasp the huge tourism opportunities, more and more tour operators design tourist packages and provide to users. Generally, tourist packages have many advantages such as cheaper ticket price and higher transportation convenience. However, researches on trip planning combining tourist packages have not been mentioned in the past studies. In this research, we present a new approach named Package-Attraction-based Trip Planner (PAT-Planner) to simultaneously combine tourist packages and tourist attractions for personalized trip planning satisfying users’ travel constraints. In PAT-Planner, we first based on user preferences and temporal characteristics to design a Score Inference Model for respectively measuring the score of a tourist package or tourist attraction. Then, we develop the Hybrid Trip-Mine algorithm meeting user travel constraints for personalized trip planning. Besides, we further propose two improvement strategies, namely Score Estimation and Score Bound Tightening, based on Hybrid Trip-Mine to speed up the trip planning efficiency. As far as we know, our study is the first attempt to simultaneously combine tourist packages and tourist attractions on trip planning problem. Through a series of experimental evaluations and case studies using the collected Gowalla datasets, PAT-Planner demonstrates excellent planning effects.  相似文献   

2.
ReFlO is a framework and interactive tool to record and systematize domain knowledge used by experts to derive complex pipe-and-filter (PnF) applications. Domain knowledge is encoded as transformations that alter PnF graphs by refinement (adding more details), flattening (removing modular boundaries), and optimization (substituting inefficient PnF graphs with more efficient ones). All three kinds of transformations arise in reverse-engineering legacy PnF applications. We present the conceptual foundation and tool capabilities of ReFlO, illustrate how parallel PnF applications are designed and generated, and how domain-specific libraries of transformations are developed.  相似文献   

3.
This paper proposes a genetic algorithm \(GA\_JS\) for solving distributed and flexible job-shop scheduling (DFJS) problems. A DFJS problem involves three scheduling decisions: (1) job-to-cell assignment, (2) operation-sequencing, and (3) operation-to-machine assignment. Therefore, solving a DFJS problem is essentially a 3-dimensional solution space search problem; each dimension represents a type of decision. The \(GA\_JS\) algorithm is developed by proposing a new and concise chromosome representation \({\varvec{S}}_{{\varvec{JOB}}}\), which models a 3-dimensional scheduling solution by a 1-dimensional scheme (i.e., a sequence of all jobs to be scheduled). That is, the chromosome space is 1-dimensional (1D) and the solution space is 3-dimensional (3D). In \(GA\_JS\), we develop a 1D-to-3D decoding method to convert a 1D chromosome into a 3D solution. In addition, given a 3D solution, we use a refinement method to improve the scheduling performance and subsequently use a 3D-to-1D encoding method to convert the refined 3D solution into a 1D chromosome. The 1D-to-3D decoding method is designed to obtain a “good” 3D solution which tends to be load-balanced. In contrast, the refinement and 3D-to-1D encoding methods of a 3D solution provides a novel way (rather than by genetic operators) to generate new chromosomes, which are herein called shadow chromosomes. Numerical experiments indicate that \(GA\_JS\) outperforms the IGA developed by De Giovanni and Pezzella (Eur J Oper Res 200:395–408, 2010), which is the up-to-date best-performing genetic algorithm in solving DFJS problems.  相似文献   

4.
Directed model checking is a well-established approach for detecting error states in concurrent systems. A popular variant to find shortest error traces is to apply the A\(^*\) search algorithm with distance heuristics that never overestimate the real error distance. An important class of such distance heuristics is the class of pattern database heuristics. Pattern database heuristics are built on abstractions of the system under consideration. In this paper, we propose downward pattern refinement, a systematic approach for the construction of pattern database heuristics for concurrent systems of timed automata. First, we propose a general framework for pattern databases in the context of timed automata and show that desirable theoretical properties hold for the resulting pattern database. Afterward, we formally define a concept to measure the accuracy of abstractions. Based on this concept, we propose an algorithm for computing succinct abstractions that are still accurate to produce informed pattern databases. We evaluate our approach on large and complex industrial problems. The experiments show the practical potential of the resulting pattern database heuristic.  相似文献   

5.
Partially observable Markov decision processes (POMDPs) provide a rich mathematical framework for planning tasks in partially observable stochastic environments. The notion of the covering number, a metric of capturing the search space size of a POMDP planning problem, has been proposed as a complexity measure of approximate POMDP planning. Existing theoretical results are based on POMDPs with finite and discrete state spaces and measured in the l 1-metric space. When considering heuristics, they are assumed to be always admissible. This paper extends the theoretical results on the covering numbers of different search spaces, including the newly defined space reachable under inadmissible heuristics, to the l n-metric spaces. We provide a simple but scalable algorithm for estimating covering numbers. Experimentally, we provide estimated covering numbers of the search spaces reachable by following different policies on several benchmark problems, and analyze their abilities to predict the runtime of POMDP planning algorithms.  相似文献   

6.
Travel planning and location recommendation are increasingly important in recent years. In this light, we propose and study a novel aggregate location recommendation query (ALRQ) of discovering aggregate locations for multiple travelers and planning the corresponding travel routes in dynamic transportation networks. Assuming the scenario that multiple travelers target the same destination, given a set of travelers’ locations Q, a set of potential aggregate location O, and a departure time t, the ALRQ finds an aggregate location oO that has the minimum global travel time \({\sum }_{q \in Q} T(q,o,t)\), where T(q,o,t) is the travel time between o and q with departure time t. The ALRQ problem is challenging due to three reasons: (1) how to model the dynamic transportation networks practically, and (2) how to compute ALRQ efficiently. We take two types of dynamic transportation networks into account, and we define a pair of upper and lower bounds to prune the search space effectively. Moreover, a heuristic scheduling strategy is adopted to schedule multiple query sources. Finally, we conducted extensive experiments on real and synthetic spatial data to verify the performance of the developed algorithms.  相似文献   

7.
Performance of cryptanalytic quantum search algorithms is mainly inferred from query complexity which hides overhead induced by an implementation. To shed light on quantitative complexity analysis removing hidden factors, we provide a framework for estimating time–space complexity, with carefully accounting for characteristics of target cryptographic functions. Processor and circuit parallelization methods are taken into account, resulting in the time–space trade-off curves in terms of depth and qubit. The method guides how to rank different circuit designs in order of their efficiency. The framework is applied to representative cryptosystems NIST referred to as a guideline for security parameters, reassessing the security strengths of AES and SHA-2.  相似文献   

8.
We study the physical behavior of the transition of a 5D perfect fluid universe from an early decelerating phase to the current accelerating phase in the framework of f(R, T) theory of gravity in the presence of domain walls. The fifth dimension is not observed because it is compact. To determine the solution of the field equations, we use the concept of a time-dependent deceleration parameter which yields the scale factor a(t) = sinh1/n(αt), where n and α are positive constants. For 0 < n ≤ 1, this generates a class of accelerating models, while for n > 1 the universe attains a phase transition from an early decelerating phase to the present accelerating phase, consistent with the recent observations. Some physical and geometric properties of the models are also discussed.  相似文献   

9.
Resource-conscious technologies for cutting sheet material include the ICP and ECP technologies that allow for aligning fragments of the contours of cutouts. In this work, we show the mathematical model for the problem of cutting out parts with these technologies and algorithms for finding cutting tool routes that satisfy technological constraints. We give a solution for the problem of representing a cutting plan as a plane graph G = (V,F,E), which is a homeomorphic image of the cutting plan. This has let us formalize technological constraints on the trajectory of cutting the parts according to the cutting plan and propose a series of algorithms for constructing a route in the graph G = (V,F,E), which is an image of an admissible trajectory. Using known coordinates of the preimages of vertices of graph G = (V,F,E) and the locations of fragments of the cutting plan that are preimages of edges of graph G = (V,F,E), the resulting route in the graph G = (V,E) can be interpreted as the cutting tool’s trajectory.The proposed algorithms for finding routes in a connected graph G have polynomial computational complexity. To find the optimal route in an unconnected graph G, we need to solve, for every dividing face f of graph G, a travelling salesman problem on the set of faces incident to f.  相似文献   

10.
In recent years, many layered indexing techniques over distributed hash table (DHT)-based peer-to-peer (P2P) systems have been proposed to realize distributed range search. In this paper, we present a fault tolerant constant degree dynamic Distributed Spatial Data Structure called DSDS that supports orthogonal range search on a set of N d-dimensional points published on n nodes. We describe a total order binary relation algorithm to publish points among supernodes and determine supernode keys. A non-redundant rainbow skip graph is used to coordinate message passing among nodes. The worst case orthogonal range search cost in a d-dimensional DSDS with n nodes is \(O\left (\log n+m+\frac {K}{B}\right )\) messages, where m is the number of nodes intersecting the query, K is the number of points reported in range, and B is the number of points that can fit in one message. A complete backup copy of data points stored in other nodes provides redundancy for our DSDS. This redundancy permits answering a range search query in the case of failure of a single node. For single node failure, the DSDS routing system can be recovered to a fully functional state at a cost of O(log n) messages. Backup sets in DSDS nodes are used to first process a query in the most efficient dimension, and then used to process a query containing the data in a failed node in d-dimensional space. The DSDS search algorithm can process queries in d-dimensional space and still tolerate failure of one node. Search cost in the worst case with a failed node increases to \(O\left (d\log n+dm+\frac {K}{B}\right )\) messages for d dimensions.  相似文献   

11.
Location-based services allow users to perform check-in actions, which record the geo-spatial activities and provide a plentiful source to do more accurate and useful geographical recommendation. In this paper, we present a novel Preferred Time-aware Route Planning (PTRP) problem, which aims to recommend routes whose locations are not only representative but also need to satisfy users’ preference. The central idea is that the goodness of visiting locations along a route is significantly affected by the visiting time and user preference, and each location has its own proper visiting time due to its category and population. We develop a four-stage preference-based time-aware route planning framework. First, since there is usually either noise time on existing locations or no visiting information on new locations, we devise an inference method, LocTimeInf, to predict the location visiting time on routes. Second, considering the geographical, social, and temporal information of users, we propose the GST-Clus method to group users with similar location visiting preferences. Third, we find the representative and popular time-aware location-transition behaviors by proposing Time-aware Transit Pattern Mining (TTPM) algorithm. Finally, based on the mined time-aware transit patterns, we develop a Preferred Route Search (PR-Search) algorithm to construct the final time-aware routes. Experiments on Gowalla and Foursquare check-in data exhibit the promising effectiveness and efficiency of the proposed methods, comparing to a series of competitors.  相似文献   

12.
Continuous visible nearest neighbor query processing in spatial databases   总被引:1,自引:0,他引:1  
In this paper, we identify and solve a new type of spatial queries, called continuous visible nearest neighbor (CVNN) search. Given a data set P, an obstacle set O, and a query line segment q in a two-dimensional space, a CVNN query returns a set of \({\langle p, R\rangle}\) tuples such that \({p \in P}\) is the nearest neighbor to every point r along the interval \({R \subseteq q}\) as well as p is visible to r. Note that p may be NULL, meaning that all points in P are invisible to all points in R due to the obstruction of some obstacles in O. In contrast to existing continuous nearest neighbor query, CVNN retrieval considers the impact of obstacles on visibility between objects, which is ignored by most of spatial queries. We formulate the problem, analyze its unique characteristics, and develop efficient algorithms for exact CVNN query processing. Our methods (1) utilize conventional data-partitioning indices (e.g., R-trees) on both P and O, (2) tackle the CVNN search by performing a single query for the entire query line segment, and (3) only access the data points and obstacles relevant to the final query result by employing a suite of effective pruning heuristics. In addition, several interesting variations of CVNN queries have been introduced, and they can be supported by our techniques, which further demonstrates the flexibility of the proposed algorithms. A comprehensive experimental evaluation using both real and synthetic data sets has been conducted to verify the effectiveness of our proposed pruning heuristics and the performance of our proposed algorithms.  相似文献   

13.
Existing work of XML keyword search focus on how to find relevant and meaningful data fragments for a query, assuming each keyword is intended as part of it. However, in XML keyword search, user queries usually contain irrelevant or mismatched terms, typos etc, which may easily lead to empty or meaningless results. In this paper, we introduce the problem of content-aware XML keyword query refinement, where the search engine should judiciously decide whether a user query Q needs to be refined during the processing of Q, and find a list of promising refined query candidates which guarantee to have meaningful matching results over the XML data, without any user interaction or a second try. To achieve this goal, we build a novel content-aware XML keyword query refinement framework consisting of two core parts: (1) we build a query ranking model to evaluate the quality of a refined query RQ, which captures the morphological/semantical similarity between Q and RQ and the dependency of keywords of RQ over the XML data; (2) we integrate the exploration of RQ candidates and the generation of their matching results as a single problem, which is fulfilled within a one-time scan of the related keyword inverted lists optimally. Finally, an extensive empirical study verifies the efficiency and effectiveness of our framework.  相似文献   

14.
Difficulties with planning, such as negotiating task understandings and goals, can have a profound effect on regulation and task performance when students work collaboratively (Miller and Hadwin, Computers in Human Behaviour, 52, 573-588, 2015a). Despite planning being a common challenge, teams often fail to identify strategies for addressing those challenges successfully. The purpose of this study was to examine the effect of team planning support in the form of awareness visualizations (quantified, nominal, and no visualization of individual planning perceptions summarized across group members) on the challenges students face during collaboration, and the ways they report regulating in the face of those challenges. Findings revealed differences across conditions. Individuals in the no visualization condition (a) rated planning as more problematic, and (b) were likely to encounter doing the task, checking progress, and group work challenges when they encounter planning challenges, (c) reported more time and planning main challenges compared to doing the task and group work challenges, and (d) reported that planning strategies (adopted as a team) were most effective for addressing planning challenges, followed by teamwork strategies which were less effective. In contrast, individuals belonging to groups who received one of the two visualizations (a) reported that both planning and teamwork strategies to be equally effective for addressing planning challenges, and (b) reported higher levels of success with their strategies than groups without a visualization support. Findings attest to the importance of supporting group planning with planning visualizations.  相似文献   

15.
The key issue in top-k retrieval, finding a set of k documents (from a large document collection) that can best answer a user’s query, is to strike the optimal balance between relevance and diversity. In this paper, we study the top-k retrieval problem in the framework of facility location analysis and prove the submodularity of that objective function which provides a theoretical approximation guarantee of factor 1?\(\frac{1}{e}\) for the (best-first) greedy search algorithm. Furthermore, we propose a two-stage hybrid search strategy which first obtains a high-quality initial set of top-k documents via greedy search, and then refines that result set iteratively via local search. Experiments on two large TREC benchmark datasets show that our two-stage hybrid search strategy approach can supersede the existing ones effectively and efficiently.  相似文献   

16.
Clustering a large volume of data in a distributed environment is a challenging issue. Data stored across multiple machines are huge in size, and solution space is large. Genetic algorithm deals effectively with larger solution space and provides better solution. In this paper, we proposed a novel clustering algorithm for distributed datasets, using combination of genetic algorithm (GA) with Mahalanobis distance and k-means clustering algorithm. The proposed algorithm is two phased; in phase 1, GA is applied in parallel on data chunks located across different machines. Mahalanobis distance is used as fitness value in GA, which considers covariance between the data points and thus provides a better representation of initial data. K-means with K-means\( ++ \) initialization is applied in phase 2 on intermediate output to get final result. The proposed algorithm is implemented on Hadoop framework, which is inherently designed to deal with distributed datasets in a fault-tolerant manner. Extensive experiments were conducted for multiple real-life and synthetic datasets to measure performance of our proposed algorithm. Results were compared with MapReduce-based algorithms, mrk-means, parallel k-means and scaling GA.  相似文献   

17.
This paper introduces α-systems of differential inclusions on a bounded time interval [t0, ?] and defines α-weakly invariant sets in [t0, ?] × ?n, where ?n is a phase space of the differential inclusions. We study the problems connected with bringing the motions (trajectories) of the differential inclusions from an α-system to a given compact set M ? ?n at the moment ? (the approach problems). The issues of extracting the solvability set W ? [t0, ?] × ?n in the problem of bringing the motions of an α-system to M and the issues of calculating the maximal α-weakly invariant set Wc ? [t0, ?] × ?n are also discussed. The notion of the quasi-Hamiltonian of an α-system (α-Hamiltonian) is proposed, which seems important for the problems of bringing the motions of the α-system to M.  相似文献   

18.
In this paper, an efficient technique for optimal design of digital infinite impulse response (IIR) filter with minimum passband error (e p ), minimum stopband error (e s ), high stopband attenuation (A s ), and also free from limit cycle effect is proposed using cuckoo search (CS) algorithm. In the proposed method, error function, which is multi-model and non-differentiable in the heuristic surface, is constructed as the mean squared difference between the designed and desired response in frequency domain, and is optimized using CS algorithm. Computational efficiency of the proposed technique for exploration in search space is examined, and during exploration, stability of filter is maintained by considering lattice representation of the denominator polynomials, which requires less computational complexity as well as it improves the exploration ability in search space for designing higher filter taps. A comparative study of the proposed method with other algorithms is made, and the obtained results show that 90% reduction in errors is achieved using the proposed method. However, computational complexity in term of CPU time is increased as compared to other existing algorithms.  相似文献   

19.
Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and εDistance Join Query (εDJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold (ε). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for εDJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and εDJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and εDJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases.  相似文献   

20.
This paper presents a simultaneous H2/H stabilization problem for the chemical reaction systems which can be modeled as a finite collection of subsystems. A single dynamic output feedback controller which simultaneously stabilizes the multiple subsystems and captures the mixed H2/H control performance is designed. To ensure that the stability condition, the H2 characterization and the H characterization can be enforced within a unified matrix inequality framework, a novel technique based on orthogonal complement space is developed. Within such a framework, the controller gain is parameterized by the introduction of a common free positive definite matrix, which is independent of the multiple Lyapunov matrices. An iterative linear matrix inequality (ILMI) algorithm using Matlab Yalmip toolbox is established to deal with the proposed framework. Simulation results of a typical chemical reaction system are exploited to show the validity of the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号