首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes an analytical modeling framework to investigate multipath routing in multihop mobile ad hoc networks. In this paper, a more generalized system has been considered and mathematically analyzed to observe some of the related performance measures of the ad hoc network. Each node in the network is assumed to have finite buffer. The single-path model is approximated to be a multi-node M/M/1/B tandem network, and the multi-path model as a set of multiple parallel paths. This proposed model allows us to investigate issues such as end-to-end delivery delay, throughput and routing reliability in mobile ad hoc networks. Theoretical results have been verified by numerical results. An optimal path selection strategy has been proposed to select a minimized delay path among the available multiple paths between source-destination pair.  相似文献   

2.
Nowadays, wireless sensor network (WSN) is an important component in IoT environment, which enables efficient data collection and transmission. Since WSN consists of a large number of sensor nodes, network congestion can easily occur which significantly degrades the performance of entire network. In this paper a novel scheme called SMQP (Statistical Multipath Queue-wise Preemption) routing is proposed to balance the load and avoid the congestion for ZigBee-based WSN. This is achieved by employing statistical path scheduling and queue-wise preemption with multiple paths between any source and destination node. NS2 simulation reveals that the proposed scheme significantly improves the QoS in terms of delivery ratio, end-to-end delay, and packet delivery ratio compared to the representative routing schemes for WSN such as ad hoc on-demand distance vector and ad hoc on-demand multipath distance vector scheme.  相似文献   

3.
SMORT: Scalable multipath on-demand routing for mobile ad hoc networks   总被引:3,自引:0,他引:3  
L.  S.V.   《Ad hoc Networks》2007,5(2):162-188
Increasing popularity and availability of portable wireless devices, which constitute mobile ad hoc networks, calls for scalable ad hoc routing protocols. On-demand routing protocols adapt well with dynamic topologies of ad hoc networks, because of their lower control overhead and quick response to route breaks. But, as the size of the network increases, these protocols cease to perform due to large routing overhead generated while repairing route breaks. We propose a multipath on-demand routing protocol (SMORT), which reduces the routing overhead incurred in recovering from route breaks, by using secondary paths. SMORT computes fail-safe multiple paths, which provide all the intermediate nodes on the primary path with multiple routes (if exists) to destination. Exhaustive simulations using GloMoSim with large networks (2000 nodes) confirm that SMORT is scalable, and performs better even at higher mobility and traffic loads, when compared to the disjoint multipath routing protocol (DMRP) and ad hoc on-demand distance vector (AODV) routing protocol.  相似文献   

4.
Among the many multipath routing protocols, the AOMDV is widely used in highly dynamic ad hoc networks because of its generic feature. Since the communicating nodes in AOMDV are prone to link failures and route breaks due to the selection of multiple routes between any source and destination pair based on minimal hop count which does not ensure end-to-end reliable data transmission. To overcome such problems, we propose a novel node disjoint multipath routing protocol called End-to-End Link Reliable Energy Efficient Multipath Routing (E2E-LREEMR) protocol by extending AOMDV. The E2E-LREEMR finds multiple link reliable energy efficient paths between any source and destination pair for data transmission using two metrics such as Path-Link Quality Estimator and Path-Node Energy Estimator. We evaluate the performance of E2E-LREEMR protocol using NS 2.34 with varying network flows under random way-point mobility model and compare it with AOMDV routing protocol in terms of Quality of Service metrics. When there is a hike in network flows, the E2E-LREEMR reduces 30.43 % of average end-to-end delay, 29.44 % of routing overhead, 32.65 % of packet loss ratio, 18.79 % of normalized routing overhead and 12.87 % of energy consumption. It also increases rather 10.26 % of packet delivery ratio and 6.96 % of throughput than AOMDV routing protocol.  相似文献   

5.
A mobile ad hoc network (MANET) is a self-configurable network connected by wireless links. This type of network is only suitable for provisional communication links as it is infrastructure-less and there is no centralized control. Providing QoS and security aware routing is a challenging task in this type of network due to dynamic topology and limited resources. The main purpose of secure and trust based on-demand multipath routing is to find trust based secure route from source to destination which will satisfy two or more end to end QoS constraints. In this paper, the standard ad hoc on-demand multi-path distance vector protocol is extended as the base routing protocol to evaluate this model. The proposed mesh based multipath routing scheme to discover all possible secure paths using secure adjacent position trust verification protocol and better link optimal path find by the Dolphin Echolocation Algorithm for efficient communication in MANET. The performance analysis and numerical results show that our proposed routing protocol produces better packet delivery ratio, reduced packet delay, reduced overheads and provide security against vulnerabilities and attacks.  相似文献   

6.
A mobile ad hoc network is an autonomous system of infrastructure-less, multihop, wireless mobile nodes. Reactive routing protocols perform well in this environment due to their ability to cope quickly against topological changes. This paper proposes a new routing protocol named CHAMP (caching and multiple path) routing protocol. CHAMP uses cooperative packet caching and shortest multipath routing to reduce packet loss due to frequent route failures. We show through extensive simulation results that these two techniques yield significant improvement in terms of packet delivery, end-to-end delay and routing overhead. We also show that existing protocol optimizations employed to reduce packet loss due to frequent route failures, namely local repair in AODV and packet salvaging in DSR, are not effective at high mobility rates and high network traffic.  相似文献   

7.
Dynamic Adaptive Routing for a Heterogeneous Wireless Network   总被引:2,自引:0,他引:2  
This paper presents an integrated architecture of a Heterogeneous Wireless Network (HWN) and a dynamic adaptive routing protocol (DARP) for a HWN. To allow mobile users versatile communication with anyone or any device at any place and anytime, HWN integrates cellular network with an ad hoc network (independent Basic Service Set) in wireless local area network (WLAN) and reserves advantages of sizable coverage in a cellular network and high data rate in deployable ad hoc network. It also enlarges the scope of communication for ad hoc network and improves the throughput for cellular network. Consequently, nodes in HWN can communicate with each other or access Internet ubiquitously. We also address the routing issues for HWN, because the routing protocol for HWN is different from those used in cellular network or ad hoc network. The dynamic adaptive routing protocol establishes a better path for the source to arrive at the destination across multiple hops or cellular network and provides appropriate QoS (quality of service) in HWN.Through simulation, we will demonstrate the merit of the HWN, proposed routing performance on HWN and overhead of control traffic. A performance analysis of the proposed protocol is depicted. The results of the analysis, and simulations, are presented and discussed.  相似文献   

8.

A mobile ad hoc network (MANET) is a collection of wireless mobile nodes that can communicate without a central controller or fixed infrastructure. Due to node mobility, designing a routing protocol to provide an efficient and suitable method to route the data with less energy consumption, packet drop and to prolong the network lifetime has become a challenging issue in MANETs. In MANETs, reducing energy consumption and packet loss involves congestion control and load balancing techniques. Thus, this paper introduces an efficient routing technique called the multipath load balancing technique for congestion control (MLBCC) in MANETs to efficiently balance the load among multiple paths by reducing the congestion. MLBCC introduces a congestion control mechanism and a load balancing mechanism during the data transmission process. The congestion control mechanism detects the congestion by using an arrival rate and an outgoing rate at a particular time interval T. The load balancing mechanism selects a gateway node by using the link cost and the path cost to efficiently distribute the load by selecting the most desirable paths. For an efficient flow of distribution, a node availability degree standard deviation parameter is introduced. Simulation results of MLBCC show the performance improvements in terms of the control overhead, packet delivery ratio, average delay and packet drop ratio in comparison with Fibonacci sequence multipath load balancing, stable backbone-based multipath routing protocol and ad hoc on demand multipath distance vector routing. In addition, the results show that MLBCC efficiently balances the load of the nodes in the network.

  相似文献   

9.
袁永琼 《电子科技》2013,26(5):135-138
提出了无线自组织网络中一种拥塞意识的多径路由算法。该算法在路由发现过程中,综合节点的队列长度和路径跳数来动态确定路由请求消息的转发概率,可以在保证路由请求消息有一定送达率的条件下,降低路由开销;在路径选择和流量分配过程中,综合考虑节点的队列长度和路径质量作为路由度量,发现流量高吞吐量低拥塞路径,并基于该度量值进行流量分配。仿真结果显示,所提出的多径路由算法能有效提高网络性能。  相似文献   

10.
On-demand loop-free routing with link vectors   总被引:1,自引:0,他引:1  
We present the on-demand link vector (OLIVE) protocol, a routing protocol for ad hoc networks based on link-state information that is free of routing loops and supports destination-based packet forwarding. Routers exchange routing information reactively for each destination in the form of complete paths, and each node creates a labeled source graph based on the paths advertised by its neighbors. A node originates a broadcast route request (RREQ) to obtain a route for a destination for which a complete path does not exist in its source graph. When the original path breaks, a node can select an alternative path based on information reported by neighbors, and a node can send a unicast RREQ to verify that the route is still active. A node that cannot find any alternate path to a destination sends route errors reliably to those neighbors that were using it as next hop to the destination. Using simulation experiments in ns2, OLIVE is shown to outperform dynamic source routing, ad hoc on-demand distance vector, optimized link-state routing protocol, and topology broadcast based on reverse-path forwarding, in terms of control overhead, throughput, and average network delay, while maintaining loop-free routing with no need for source routes.  相似文献   

11.
无线ad hoc网络中多路径负载平衡性能分析   总被引:4,自引:1,他引:3  
王辉  俞能海 《通信学报》2005,26(11):30-39
提出了一种新颖的分析模型来计算无线ad hoc网络中多路径情况下的负载。该模型考虑到多路径的数目、路由的选取方法以及网络中节点的密度等条件,能够对不同网络条件下的负载进行较好的分析与理论计算。仿真结果与理论计算有良好的一致性,结果表明在无线ad hoc网络中简单地使用多路径路由并不能有效地平衡网络负载。这一结论与目前普遍认定的结论(在无线ad hoc网络中使用多路径路由和在有线网络中使用多路径路由一样,可以很好地平衡网络负载、增加网络的吞吐量)是不一致的。  相似文献   

12.
该文分析了移动Adhoc网络中普遍存在但被忽视的自相似业务的路由和排队性能,提出了基于网络规划模型的多径备份路由优化功率(MBOP)算法。该算法利用多路径和备份路由,并对网络的发射功率进行优化,适用于网络结构动态变化的移动无线自组织网络。仿真结果表明,该算法可以显著改善节点的排队性能,提高网络的吞吐量改进时延性能。  相似文献   

13.
In this paper, we develop an analytical framework for evaluating multipath routing in mobile ad hoc networks. The instability of the topology (e.g., failure of links) in this type of network due to nodal mobility and changes in wireless propagation conditions makes transmission of time-sensitive information a challenging problem. To combat the inherent unreliability of these networks, we propose a routing scheme that uses multiple paths simultaneously by splitting the information between a multitude of paths, so as to increase the probability that the essential portion of the information is received at the destination without incurring excessive delay. Our scheme works by adding an overhead to each packet, which is calculated as a linear function of the original packet bits. The resulting packet (information and overhead) is fragmented into smaller blocks and distributed over the available paths. The probability of reconstructing the original information at the destination is derived in an analytical form and its behavior is studied for some special cases. It is shown that, under certain constraints, the packet dropping probability decreases as the number of used paths is increased.  相似文献   

14.
AMR:一个基于网络最大流的Ad-Hoc多路径路由算法   总被引:17,自引:0,他引:17       下载免费PDF全文
移动Ad-Hoc网路研究中,路由是一个关键问题.现有的Ad-Hoc路由算法大多为单路径算法.但是多路径方法可以更好地支持QoS,最近也受到较大关注.在没有精确的网络拓扑结构情况下,找出多条不相交路径是比较困难的.本文提出了一个基于网络最大流的Ad-Hoc多路径路由算法AMR(Aggregated multipath routing).该算法可以有效地找出多条节点不相交的路径,较大幅度地提高网络传输性能、减少网络拥塞.经过性能测试,表明AMR算法比DSR算法在数据传输率方面提高20%—60%,端对端平均延迟降低40%—60%.  相似文献   

15.
The majority of existing ad hoc network routing protocols has a tendency to use the shortest single path from a source to a destination. However, in constantly changing topologies such as those in mobile ad hoc wireless networks, the shortest single path is not only unreliable for reachability but also unsuitable for traffic load equilibrium. In order to improve routing performance and make optimum use of the limited resources, the congestion must first be relieved as much as possible and the routing path be made available at all times. In this paper, we propose a novel scheme, called the Applicative Indirect Routing (AIR), to control network traffic congestion and refine route availability by coping with unreliable links quickly. The proposed scheme, acting as a proactive routing protocol, utilizes additional information about the neighbors shared by the sender and the receiver to find an alternative for the original path with unreliable links. The additional bandwidth usage in AIR to obtain the information about shared neighbors (defined as proxy candidates) is so minimal that the bandwidth availability for user data traffic is not significantly affected. Extensive simulation experiments show that compared with a conventional proactive protocol, namely Destination-Sequenced Distance Vector (DSDV), the AIR scheme leads to a much improved system performance in terms of packet delivery ratio, average end-to-end packet delay, and network reliability. We further show that, in terms of packet delivery ratio, AIR is also a competitive protocol compared with such reactive protocols as Ad hoc On Demand Distance Vector (AODV) and Dynamic Source Routing (DSR).  相似文献   

16.
Over the last few years, wireless sensor networks have become a great field of interest for the scientific community. This novel kind of network provides an array of applications for different aspects of human life. To give a satisfying performance to the final user, the wireless sensor networks must ensure the quality of service. The use of multipath technique was widely applied in the literature. Nevertheless, there might be a problem if the interference issues are not taken into account by the multipath routing design. In this paper, we propose a novel multipath routing protocol called Carrier Sense Aware Multipath Geographic Routing protocol (CSA‐MGR). This protocol creates multiple paths while avoiding any shared carrier sense range by using a distributed and dynamic process. In addition, the CSA‐MGR employs a new metrics named the Number of Common Neighbors to guarantee a faster and an efficient path construction. Simulations conducted over the NS‐2 simulator show promising results in terms of delay, Packet Delivery Ratio and routing overhead. The performance gain of CSA‐MGR in terms of delay is up to 275% compared with the Two‐Phase geographical Greedy Forwarding and up to 565% compared with the ad hoc on‐demand multipath distance vector. For the Packet Delivery Ratio, the performance gain of CSA‐MGR is up to 16% compared with the Two‐Phase geographic Greedy Forwarding and up to 28% compared with the ad hoc on‐demand multipath distance vector. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Vehicular Adhoc Network (VANET) is playing a vital role in recent research. Designing an effective routing protocol for VANET is a challenging task as the VANET nodes move very fast. The design of the routing protocol normally is particular to the specific topology. This paper proposes CLMR, a multipath routing protocol based on cross layer design and also using Redundant Array Inexpensive Disks (RAID). Cross layer is designed among application, network, Media Access Control, and physical layers. It is employed to reduce the end to end delay in network, and RAID is used to minimize the number of re‐transmissions. Three variations of RAID 1 are implemented—Distributed Parity along Single path, Double Distributed Parity, and Distributed Parity among Multiple paths. Multipath routing protocol based on cross layer‐Distributed Parity along Single path recovers 1 packet loss per parity packet along the corresponding path, CLMR‐Double Distributed Parity recovers 2 packets per parity packet along the corresponding path, and CLMR‐Distributed Parity among Multiple paths recovers the packets of the failed path. The evaluation is carried out to test the Quality of Service parameters‐end to end delay, throughput, packet delivery ratio, and number of retransmissions. The results projected show that the CLMR performs better when compared with the legacy protocol Adhoc On‐demand Multipath Distance Vector Routing.  相似文献   

18.
Vehicular ad hoc network (VANET) has earned tremendous attraction in the recent period due to its usage in a wireless intelligent transportation system. VANET is a unique form of mobile ad hoc network (MANET). Routing issues such as high mobility of nodes, frequent path breaks, the blind broadcasting of messages, and bandwidth constraints in VANET increase communication cost, frequent path failure, and overhead and decrease efficiency in routing, and shortest path in routing provides solutions to overcome all these problems. Finding the shortest path between source and destination in the VANET road scenario is a challenging task. Long path increases network overhead, communication cost, and frequent path failure and decreases routing efficiency. To increase efficiency in routing a novel, improved distance‐based ant colony optimization routing (IDBACOR) is proposed. The proposed IDBACOR determines intervehicular distance, and it is triggered by modified ant colony optimization (modified ACO). The modified ACO method is a metaheuristic approach, motivated by the natural behavior of ants. The simulation result indicates that the overall performance of our proposed scheme is better than ant colony optimization (ACO), opposition‐based ant colony optimization (OACO), and greedy routing with ant colony optimization (GRACO) in terms of throughput, average communication cost, average propagation delay, average routing overhead, and average packet delivery ratio.  相似文献   

19.
Optimized multipath network coding in lossy wireless networks   总被引:1,自引:0,他引:1  
Network coding has been a prominent approach to a series of problems that used to be considered intractable with traditional transmission paradigms. Recent work on network coding includes a substantial number of optimization based protocols, but mostly for wireline multicast networks. In this paper, we consider maximizing the benefits of network coding for unicast sessions in lossy wireless environments. We propose Optimized Multipath Network Coding (OMNC), a rate control protocol that dramatically improves the throughput of lossy wireless networks. OMNC employs multiple paths to push coded packets to the destination, and uses the broadcast MAC to deliver packets between neighboring nodes. The coding and broadcast rate is allocated to transmitters by a distributed optimization algorithm that maximizes the advantage of network coding while avoiding congestion. With extensive experiments on an emulation testbed, we find that OMNC achieves more than two-fold throughput increase on average compared to traditional best path routing, and significant improvement over existing multipath routing protocols with network coding. The performance improvement is notable not only for one unicast session, but also when multiple concurrent unicast sessions coexist in the network.  相似文献   

20.
Multipath transport faces a lot of challenges caused by path diversity, network dynamics, and service diversity. An effective end‐to‐end multipath transport control mechanism becomes essential to efficiently utilize multiple paths. On the base of the general framework of multipath transport system based on application‐level relay proposed in our previous work, this paper presents a multipath transport control mechanism supporting various applications with different transmission requirements. We propose a multipath transport protocol suite, which is extensible and suitable for various applications, and a multipath transport control model in which an application‐dependent splitting granularity named flow block is introduced. Two load distribution models are explored: the earliest idle path first load distribution for reliable data transmission to maximize the data throughput and the packet reordering‐controlled load distribution for real‐time data transmission to minimize the packet reordering thereby reducing end‐to‐end delay and packet loss rate of multipath transport. Simulation results show that the proposed models can effectively improve data throughput for applications with reliable transmission requirements and reduce the total packet loss rate of the destination for applications with real‐time transmission requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号