首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We have developed synthetic peptide analogs to analyze novel surface structures of the human CD4 protein potentially involved in T cell activation. Linear and cyclic peptides derived from the FG and CC' loops of the membrane proximal fourth domain of CD4 displayed inhibitory activities in a CD4-dependent immunological assay. These results suggest that the fourth domain of CD4 plays an important role in T cell activation. In addition, we report the synthesis of a highly stable CD4 peptide analog cyclized by the formation of an amide bond between amino and carboxyl termini. Serum stability studies showed that this main-chain cyclic CD4 peptide was highly resistant to proteolytic degradation while the linear and disulfide cyclic peptides were much less stable. The strategy of main chain cyclization of CD4 peptides may represent a promising approach to generate proteolytically stable, orally active immunoregulatory agents.  相似文献   

2.
For a large number of T cell-mediated immunopathologies, the disease-related antigens are not yet identified. Identification of T cell epitopes is of crucial importance for the development of immune-intervention strategies. We show that CD4+ T cell epitopes can be defined by using a new system for synthesis and screening of synthetic peptide libraries. These libraries are designed to bind to the HLA class II restriction molecule of the CD4+ T cell clone of interest. The screening is based on three selection rounds using partial release of 14-mer peptides from synthesis beads and subsequent sequencing of the remaining peptide attached to the bead. With this approach, two peptides were identified that stimulate the beta cell-reactive CD4+ T cell clone 1c10, which was isolated from a newly diagnosed insulin-dependent diabetes mellitus patient. After performing amino acid-substitution studies and protein database searches, a Haemophilus influenzae TonB-derived peptide was identified that stimulates clone 1c10. The relevance of this finding for the pathogenesis of insulin-dependent diabetes mellitus is currently under investigation. We conclude that this system is capable of determining epitopes for (autoreactive) CD4+ T cell clones with previously unknown peptide specificity. This offers the possibility to define (auto)antigens by searching protein databases and/or to induce tolerance by using the peptide sequences identified. In addition the peptides might be used as leads to develop T cell receptor antagonists or anergy-inducing compounds.  相似文献   

3.
During T cell activation, CD4 and CD8 form a 'bridge' between the T cell receptor (TCR) and major histocompatibility complex (MHC) class II and class I molecules, respectively. Due to this intimate association, CD4 and CD8 are now termed co-receptors and considered an integral part of this multimolecular complex. In addition, interest in CD4 has been heightened by the discovery that it is, in part, the receptor for HIV. Although CD4 and CD8 appear to perform similar immune functions, they are structurally diverse suggesting that their mode of interaction with the TCR and MHC molecules may differ. This review will focus primarily on a series of studies which have attempted to map the residues which mediate CD4:MHC class II interaction. These data will be evaluated in light of our current understanding of CD8:MHC class I, and CD4:TCR interactions. In addition, a model to explain the structural and functional differences between CD4 and CD8 will be presented. Finally, the potential effect of these multiple interactions on T cell function will be discussed.  相似文献   

4.
Optimal immunity to the Gram-positive pathogen Listeria monocytogenes (LM) requires both CD8+ and CD4+ antigen-specific T cell responses. Understanding how CD4+ T cells function in an immune response to LM and how bacterial proteins are processed to peptide/MHC class II complexes in infected cells requires identification of these proteins. Using LacZ-inducible, LM-specific CD4+ T cells as probes, we identified two immunogenic LM proteins by a novel expression cloning strategy. The antigenic peptides contained within these proteins were defined by deletion analysis of the genes, and their antigenicity was confirmed with synthetic peptides. The nucleotide sequences of the genes showed that they encode previously unknown LM proteins that are homologous to surface proteins in other bacterial species. Consistent with their surface topology, mild trypsin treatment of LM protoplasts ablated T cell recognition of these Ags. These findings establish a general strategy for identifying unknown CD4+ T cell Ags and demonstrate that LM surface proteins can provide the peptides for presentation by MHC class II molecules that are specific targets for CD4+ T cells during murine LM infection.  相似文献   

5.
The CTLA-4 receptor is a critical inhibitory regulator of T cell proliferation and effector function. However, the mechanisms through which CTLA-4 modulates the activation of T cells remain uncertain. Initial studies, using activated human T cells, have suggested that CTLA-4 crosslinking may induce apoptosis. However, more recent experiments have demonstrated that crosslinking of the CTLA-4 receptor on the surface of resting murine T cells blocks cell cycle progression without inducing apoptosis. Here we provide evidence that CTLA-4 crosslinking on the surface of activated murine CD4(+) T lymphocytes leads to death of a substantial fraction of the cells whereas in resting CD4(+) T cells the same stimulation conditions induce cell cycle arrest without apoptosis. Cell death induced by CTLA-4 stimulation occurs independently of Fas and therefore may involve a novel pathway. CTLA-4-mediated apoptosis may be a means of terminating the function of previously stimulated T cells. Exploitation of this mechanism also may provide a therapeutic strategy to eliminate alloreactive or autoreactive T cells.  相似文献   

6.
We used an approach of protein surface epitope mapping by synthetic peptides to analyze the surface structure-function relationship of the CD8 protein. Small synthetic peptide mimics of the CD8 DE loop were shown to effectively block CD8 binding to major histocompatibility complex (MHC) class I molecules and possess significant inhibitory activity on in vitro CD8(+) T cell function. These results suggested that the DE loop region of the CD8 protein is an important functional epitope mediating CD8-MHC class I interaction and the activation of CD8(+) T cells, a finding that is consistent with the recently reported crystal structure of the CD8-MHC class I complex. The structural basis for the biological activity of the DE loop peptide was further analyzed in a series of analogs containing alanine substitutions. This study provides support for the concept of bioactive peptide design based on protein surface epitopes and suggests that such an approach may be applicable to other protein-protein complexes, particularly those of immunoglobulin superfamily molecules.  相似文献   

7.
8.
The CD4 protein is expressed on a subset of human T lymphocytes that recognize antigen in the context of major histocompatibility complex (MHC) class II molecules. Using Chinese hamster ovary (CHO) cells expressing human CD4, we have previously demonstrated that the CD4 protein can mediate cell adhesion by direct interaction with MHC class II molecules. In T lymphocytes, CD4 can also function as a signaling molecule, presumably through its intracellular association with p56lck, a member of the src family of protein tyrosine kinases. In the present report, we show that p56lck can affect cell adhesion mediated by CD4 and MHC class II molecules. The expression of wild-type p56lck in CHO-CD4 cells augments the binding of MHC class II+ B cells, whereas the expression of a mutant p56lck protein with elevated tyrosine kinase activity results in decreased binding of MHC class II+ B cells. Using site-specific mutants of p56lck, we demonstrate that the both the enzymatic activity of p56lck and its association with CD4 are required for this effect on CD4/MHC class II adhesion. Further, the binding of MHC class II+ B cells induces CD4 at the cell surface to become organized into structures resembling adhesions-type junctions. Both wild-type and mutant forms of p56lck influence CD4-mediated adhesion by regulating the formation of these structures. The wild-type lck protein enhances CD4/MHC class II adhesion by augmenting the formation of CD4-associated adherens junctions whereas the elevated tyrosine kinase activity of the mutant p56lck decreases CD4-mediated cell adhesion by preventing the formation of these structures.  相似文献   

9.
New knowledge has recently been obtained about the evolutionary conservation of CD4, CD8alphaalpha, and CD8alphabeta T cell receptor (TCR) co-receptor molecules between chicken and mammals. This conservation extends from biochemical structure and tissue distribution to function. Panels of monoclonal antibodies and polyclonal antisera against different epitopes of chicken CD8 and CD4 molecules have proven their value in several recent studies. Chicken CD8 allotypes and homozygous strains carrying these allotypes have been established and these strains provide excellent models for further studies. The extensive polymorphism of CD8alpha in chickens has not been observed in any other species, suggesting that CD8alpha and CD8beta have evolved under different selective pressure in the chicken. A large peripheral blood CD4+CD8+ T cell population in chicken resembles that observed in some human individuals but the inheritance of peripheral blood CD4CD8alphaalpha T cells in the chicken is a unique observation, which suggests the presence of a single gene responsible for CD8alpha, but not CD8beta, specific expression. Despite these unique findings in chicken, the data on CD4, CD8alphaalpha, and CD8alphabeta molecules show that they have evolved before the divergence of mammalian and avian branches from their reptilian ancestors.  相似文献   

10.
Several members of the chemokine receptor family have been shown to function in association with CD4 to permit human immunodeficiency virus type 1 (HIV-1) entry and infection. The CXC chemokine receptor CXCR4/fusin is a receptor for pre-B cell growth stimulating factor (PBSF)/stromal cell-derived factor 1 (SDF-1) and serves as a coreceptor for the entry of T cell line-tropic HIV-1 strains. Thus, the development of CXCR4 antagonists or agonists may be useful in the treatment of HIV-1 infection. T22 ([Tyr5,12,Lys7]-polyphemusin II) is a synthesized peptide that consists of 18 amino acid residues and an analogue of polyphemusin II isolated from the hemocyte debris of American horseshoe crabs (Limulus polyphemus). T22 was found to specifically inhibit the ability of T cell line-tropic HIV-1 to induce cell fusion and infect the cell lines transfected with CXCR4 and CD4 or peripheral blood mononuclear cells. In addition, T22 inhibited Ca2+ mobilization induced by pre-B cell growth stimulating factor (PBSF)/SDF-1 stimulation through CXCR4. Thus, T22 is a small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 entry into target cells.  相似文献   

11.
Notch is a transmembrane receptor that controls cell fate decisions in Drosophila and whose role in mammalian cell fate decisions is beginning to be explored. We are investigating the role of Notch in a well-studied mammalian cell fate decision: the choice between the CD8 and CD4 T cell lineages. Here we report that expression of an activated form of Notch1 in developing T cells of the mouse leads to both an increase in CD8 lineage T cells and a decrease in CD4 lineage T cells. Expression of activated Notch permits the development of mature CD8 lineage thymocytes even in the absence of class I major histocompatability complex (MHC) proteins, ligands that are normally required for the development of these cells. However, activated Notch is not sufficient to promote CD8 cell development when both class I and class II MHC are absent. These results implicate Notch as a participant in the CD4 versus CD8 lineage decision.  相似文献   

12.
Prior studies in CD4-deficient mice established the capacity of T helper (Th) lineage cells to mature into Th1 cells. Unexpectedly, challenge of these mice with Nippostrongylus brasiliensis, a Th2-inducing stimulus, failed to result in the development of Th2 cells. Additional studies were performed using CD4+ or CD4-CD8- (double-negative) T cell receptor (TCR) transgenic T cells reactive to LACK antigen of Leishmania major. Double-negative T cells were unable to develop into Th2 cells in vivo, and, unlike CD4+ T cells, could not be primed for interleukin-4 production in vitro. Similarly, CD4+ TCR transgenic T cells primed on antigen-presenting cells expressing mutant MHC class II molecules unable to bind CD4 did not differentiate into Th2 cells. These data suggest that interactions between the TCR, MHC II-peptide complex and CD4 may be involved in Th2 development.  相似文献   

13.
Positive selection is an obligatory step during intrathymic T cell differentiation. It is associated with rescue of short-lived, self major histocompatibility complex (MHC)-restricted thymocytes from programmed cell death, CD4/CD8 T cell lineage commitment, and induction of lineage-specific differentiation programs. T cell receptor (TCR) signaling during positive selection can be closely mimicked by targeting TCR on immature thymocytes to cortical epithelial cells in situ via hybrid antibodies. We show that selection of CD4 T cell lineage cells in mice deficient for MHC class I and MHC class II expression can be reconstituted in vivo by two separable T cell receptor signaling steps, whereas a single TCR signal leads only to induction of short-lived CD4+CD8lo intermediates. These intermediates remain susceptible to a second TCR signal for 12-48 h providing an estimate for the duration of positive selection in situ. While both TCR signals induce differentiation steps, only the second one confers long-term survival on immature thymocytes. In further support of the two-step model of positive selection we provide evidence that CD4 T cell lineage cells rescued by a single hybrid antibody pulse in MHC class II-deficient mice are pre-selected by MHC class I.  相似文献   

14.
CTL, both CD4+ and CD8+, are essential in the eradication of intracellular pathogens. Data generated using murine T cells have suggested a critical role for CD95 (Fas, Apo-1) in CD4+ T cell-induced apoptosis of target cells. In contrast, CD8+ CTL predominantly use the perforin/granzyme lytic pathway. At present little is known about the mechanism of CD4+ CTL lytic function during intracellular infection in humans. We have used human CD4+ T cells specific for purified protein derivative (PPD) of Mycobacterium tuberculosis to explore whether CD95 is the dominant cytolytic mechanism. PPD-reactive CD4+ clones efficiently lysed Ag-pulsed autologous monocytes, adherent macrophages, and EBV-transformed B cells. Addition of an antagonistic CD95 Ab had a minimal effect on cytolysis, whereas addition of MgEGTA to block perforin/granzyme resulted in complete inhibition of killing. In contrast, lysis of activated peripheral blood B cells could be partially blocked with the antagonistic CD95 Ab. Supporting these observations, monocytes, macrophages, and EBV-transformed B cells were not lysed by an agonistic CD95 Ab. Activated B cells were readily lysed by the agonistic CD95 Ab. T cell clones triggered through the TCR with anti-CD3 were capable of lysing the CD95-sensitive Jurkat T cell line in a CD95-dependent manner, but were also able to release granzymes. We conclude that human CD4+ T cells are capable of lysing PPD-pulsed targets using both perforin/granzyme and CD95 pathways. The contribution of CD95 is strictly dependent on target cell susceptibility to CD95-mediated killing.  相似文献   

15.
Several studies have indicated that the necessity for co-receptor engagement during T cell activation depends on the avidity of the TCR-MHC interaction under investigation. Using thymocytes, naive T cells and a long-term T cell line isolated from 2B4 TCR transgenic mice, we have examined the role of the CD4 co-receptor on cells expressing the identical TCR at multiple stages of T cell maturation. When anti-CD4 Fab fragments were used to block CD4-MHC class II interactions, we found decreasing CD4 dependence as T cells matured. As a second approach to examining the role of the CD4 co-receptor, we generated I-Ek mutants defective in CD4 interactions. In the course of this study, we identified a new potential site for CD4 interaction in the beta1 domain of I-Ek. The new beta1 mutation and a mutation in the previously described CD4 binding site in the beta2 domain both interfere with stimulation of 2B4 thymocytes, but not mature T cells. Together these data demonstrate that the role of the CD4 co-receptor depends on the state of maturation of the T cell.  相似文献   

16.
AIDS is characterized by a progressive decrease of CD4(+) helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56(lck) and Gialpha. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4(+) but not in CD8(+) T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.  相似文献   

17.
18.
CD80 (B7-1) and CD86 (B7-2) on APC provide a major costimulatory signal through interactions with CD28 on T cells. Absent from resting human T cells, CD86 is up-regulated early upon T cell activation, whereas CD80 expression appears later. Whereas T cell expression of CD80 has been implicated in costimulation, the functional significance of CD86 expression on T cells is unclear. We now demonstrate that CD86 expressed on human CD4+ T cell clones does not provide a costimulatory signal for other CD4+ T cell clones. Binding studies using CD28-Ig and CTLA-4-Ig fusion proteins demonstrate that CD86 expressed on T cells has significantly reduced binding affinity for CTLA-4 and no detectable binding to CD28. Biochemical analysis demonstrates that post-translational modifications of CD86 in human T cells are different from those of CD86-transfected Chinese hamster ovary cells or EBV-transformed B cells, in that T cells express a hypoglycosylated form of CD86 on the surface membrane. Thus, our results suggest that while CD86 is expressed on a number of different cell types, its costimulatory function and affinity for its ligands may be regulated by cell type-specific post-translational modifications.  相似文献   

19.
The Gal beta(1-3)GalNAc-binding lectin jacalin is known to specifically induce the proliferation of human CD4+ T lymphocytes in the presence of autologous monocytes and to interact with the CD4 molecule and block HIV-1 infection of CD4+ cells. We further show that jacalin-induced proliferation is characterized by an unusual pattern of T cell activation and cytokine production by human peripheral blood mononuclear cells (PBMC). A cognate interaction between T cells and monocytes was critical for jacalin-induced proliferation, and human recombinant interleukin (IL)-1 and IL-6 did not replace the co-stimulatory activity of monocytes. Blocking studies using monoclonal antibodies (mAb) point out the possible importance of two molecular pathways of interaction, the CD2/LFA-3 and LFA-1/ICAM-1 pathways. One out of two anti-CD4 mAb abolished jacalin responsiveness. Jacalin induced interferon-gamma and high IL-6 secretion, mostly by monocytes, and no detectable IL-2 synthesis or secretion by PBMC. In contrast, jacalin-stimulated Jurkat T cells secreted IL-2. CD3- Jurkat cell variants failed to secrete IL-2, suggesting the involvement of the T cell receptor/CD3 complex pathway in jacalin signaling. IL-2 secretion by CD4- Jurkat variant cells was delayed and lowered. In addition to CD4, jacalin interacts with the CD5 molecule. Jacalin-CD4 interaction and the proliferation of PBMC, as well as IL-2 secretion by Jurkat cells were inhibited by specific jacalin-competitive sugars.  相似文献   

20.
Although considerable attention has been paid to the development of cytokine synthesis heterogeneity during memory T cell differentiation, little information is available on how this function is coregulated with homing receptor expression. The development of skin-homing, CD4+ memory T cells in the human provides an excellent model for such investigation, since 1) the skin supports both Th1- and Th2-predominant responses in different settings, and 2) the skin-homing capability of human memory T cells correlates with and appears to depend on expression of the skin-selective homing receptor cutaneous lymphocyte-associated Ag (CLA). In this study, we used multiparameter FACS analysis to examine expression of CLA vs IFN-gamma, IL-4, and IL-2 synthesis capabilities among fresh peripheral blood CD4+ memory T cells, and Th1 vs Th2 memory T cells generated in vitro from purified CD4+ naive precursors by cyclic activation in polarizing culture conditions. Among normal peripheral blood T cells, CLA expression was essentially identical among the IFN-gamma- vs IL-4-producing CD4+ memory subsets, clearly indicating the existence of in vivo mechanisms capable of producing both Th1 vs Th2 skin-homing T cells. In vitro differentiation of naive CD4+ T cells confirmed the independent regulation of CLA and all three cytokines examined, regulation that allowed differential production of IFN-gamma-, IL-4-, and IL-2-producing, CLA+ memory subsets. These studies also 1) demonstrated differences in regulatory factor activity depending on the differentiation status of the responding cell, and 2) revealed CLA expression to be much more rapidly reversible on established memory cells than cytokine synthesis capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号