首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
多孔硅外延转移技术制备以氮化硅为绝缘埋层的SOI新结构   总被引:3,自引:2,他引:1  
为减少自加热效应 ,利用多孔硅外延转移技术成功地制备出一种以氮化硅为埋层的 SOI新结构 .高分辨率透射电镜和扩展电阻测试结果表明得到的 SOI新结构具有很好的结构和电学性能 ,退火后的氮化硅埋层为非晶结构 .  相似文献   

2.
罗小蓉  李肇基  张波 《半导体学报》2006,27(10):1832-1837
针对常规SOI器件纵向耐压低和自热效应两个主要问题,提出了变k介质埋层SOI(variable k dielectric buried layer SOI,VkD SOI)高压功率器件新结构.该结构在高电场的漏端采用低k介质以增强埋层电场,在高电流密度的源端附近采用高热导率的氮化硅埋层,从而器件兼具耐高压和降低自热效应的优点.结果表明,对于k1=2,k2=7.5(Si3N4),漂移区厚2μm,埋层厚1μm的器件,埋层电场和器件耐压分别达212V/μm和255V,比相同厚度的常规SOI器件的埋层电场和耐压分别提高66%和43%,最高温度降低52%.  相似文献   

3.
针对常规SOI器件纵向耐压低和自热效应两个主要问题,提出了变k介质埋层SOI(variable k dielectric buried layer SOI,VkD SOI)高压功率器件新结构.该结构在高电场的漏端采用低k介质以增强埋层电场,在高电流密度的源端附近采用高热导率的氮化硅埋层,从而器件兼具耐高压和降低自热效应的优点.结果表明,对于k1=2,k2=7.5(Si3N4),漂移区厚2μm,埋层厚1μm的器件,埋层电场和器件耐压分别达212V/μm和255V,比相同厚度的常规SOI器件的埋层电场和耐压分别提高66%和43%,最高温度降低52%.  相似文献   

4.
提出复合介质埋层SOI(compound dielectric buried layer SOI,CDL SOI)高压器件新结构,建立其电场和电势分布的二维解析模型,给出CDL SOI和均匀介质埋层SOI器件的RESURF条件统一判据.CDL SOI结构利用漏端低k(介电常数)介质增强埋层纵向电场,具有不同k值的复合介质埋层调制漂移区电场,二者均使耐压提高.借助解析模型和二维数值仿真对其电场和电势进行分析,二者吻合较好.结果表明,对低k值为2的CDL SOILDMOS,其埋层电场和器件耐压分别比常规SOI结构提高了82%和58%.  相似文献   

5.
罗小蓉  李肇基  张波 《半导体学报》2006,27(11):2005-2010
提出复合介质埋层SOI(compound dielectric buried layer SOI,CDL SOI)高压器件新结构,建立其电场和电势分布的二维解析模型,给出CDL SOI和均匀介质埋层SOI器件的RESURF条件统一判据.CDL SOI结构利用漏端低k(介电常数)介质增强埋层纵向电场,具有不同k值的复合介质埋层调制漂移区电场,二者均使耐压提高.借助解析模型和二维数值仿真对其电场和电势进行分析,二者吻合较好.结果表明,对低k值为2的CDL SOILDMOS,其埋层电场和器件耐压分别比常规SOI结构提高了82%和58%.  相似文献   

6.
提出了一种可变低k(相对介电常数)介质层(variable low k dielectric layer,VLkD)SOI高压器件新结构,该结构的埋层由可变k的不同介质组成.基于电位移连续性原理,利用低k提高埋层纵向电场和器件纵向耐压,并在此基础上提出SOI的介质场增强原理.基于不同k的埋层对表面电场的调制作用,使器件横向耐压提高,并给出VLkD SOI的RESURF判据.借助2D器件仿真研究了击穿特性与VLkD SOI器件结构参数之间的关系.结果表明,对kIL=2,kIH=3.9,漂移区厚2μm,埋层厚1μm的VLkD器件,埋层电场和器件耐压分别达248V/μm和295V,比相同厚度的常规SOI器件的埋层电场和耐压分别提高了93%和64%.  相似文献   

7.
提出了一种可变低k(相对介电常数)介质层(variable low k dielectric layer,VLkD)SOI高压器件新结构,该结构的埋层由可变k的不同介质组成.基于电位移连续性原理,利用低k提高埋层纵向电场和器件纵向耐压,并在此基础上提出SOI的介质场增强原理.基于不同k的埋层对表面电场的调制作用,使器件横向耐压提高,并给出VLkD SOI的RESURF判据.借助2D器件仿真研究了击穿特性与VLkD SOI器件结构参数之间的关系.结果表明,对kIL=2,kIH=3.9,漂移区厚2μm,埋层厚1μm的VLkD器件,埋层电场和器件耐压分别达248V/μm和295V,比相同厚度的常规SOI器件的埋层电场和耐压分别提高了93%和64%.  相似文献   

8.
基于介质电场增强理论的SOI横向高压器件与耐压模型   总被引:1,自引:1,他引:0  
SOI(Silicon On Insulator)高压集成电路(High Voltage Integrated Circuit,HVIC)因其具有高速、低功耗、抗辐照以及易于隔离等优点而得以广泛应用。作为SOIHVIC的核心器件,SOI横向高压器件较低的纵向击穿电压,限制了其在高压功率集成电路中的应用。为此,国内外众多学者提出了一系列新结构以提高SOI横向高压器件的纵向耐压。但迄今为止,SOI横向高压器件均采用SiO2作为埋层,且实用SOI器件击穿电压不超过600V;同时,就SOI横向器件的电场分布和耐压解析模型而言,现有的模型仅针对具有均匀厚度埋氧层和均匀厚度漂移区的SOI器件建立,而且没有一个统一的理论来指导SOI横向高压器件的纵向耐压设计。笔者围绕SOI横向高压器件的耐压问题,从耐压理论、器件结构和耐压解析模型几方面进行了研究。基于SOI器件介质层电场临界化的思想,提出介质电场增强ENDIF(Enhanced Dielectric LayerField)理论。在ENDIF理论指导下,提出三类SOI横向高压器件新结构,建立相应的耐压解析模型,并进行实验。(1)ENDIF理论对现有典型横向SOI高压器件的纵向耐压机理统一化ENDIF理论的思想是通过增强埋层电场而提高SOI横向器件的纵向耐压。ENDIF理论给出了增强埋层电场的三种途径:采用低εr(相对介电常数)介质埋层、薄SOI层和在漂移区/埋层界面引入电荷,并获得了一维近似下埋层电场和器件耐压的解析式。ENDIF理论可对现有典型SOI横向高压器件的纵向耐压机理统一化,它突破了传统SOI横向器件纵向耐压的理论极限,是优化设计SOI横向高压器件纵向耐压的普适理论。(2)基于ENDIF理论,提出以下三类SOI横向高压器件新结构,并进行理论和实验研究①首次提出低εr型介质埋层SOI高压器件新型结构及其耐压解析模型低εr型介质埋层SOI高压器件包括低εr介质埋层SOI高压器件、变εr介质埋层SOI高压器件和低εr介质埋层PSOI(PartialSOI)高压器件。该类器件首次将低介电系数且高临界击穿电场的介质引入埋层或部分埋层,利用低εr介质增强埋层电场、变εr介质调制埋层和漂移区电场而提高器件耐压。通过求解二维Poisson方程,并考虑变εr介质对埋层和漂移区电场的调制作用,建立了变εr介质埋层SOI器件的耐压模型,由此获得RESURF判据。此模型和RESURF判据适用于变厚度埋层SOI器件和均匀介质埋层SOI器件,是变介质埋层SOI器件(包括变εr和变厚度介质埋层SOI器件)和均匀介质埋层SOI器件的统一耐压模型。借助解析模型和二维器件仿真软件MEDICI研究了器件电场分布和击穿电压与结构参数之间的关系。结果表明,变εr介质埋层SOI高压器件的埋层电场和器件耐压可比常规SOI器件分别提高一倍和83%,当源端埋层为高热导率的Si3N4而不是SiO2时,埋层电场和器件耐压分别提高73%和58%,且器件最高温度降低51%。解析结果和仿真结果吻合较好。②提出并成功研制电荷型介质场增强SOI高压器件笔者提出的电荷型介质场增强SOI高压器件包括:(a)双面电荷槽SOI高压器件和电荷槽PSOI高压器件,其在埋氧层的一侧或两侧形成介质槽。根据ENDIF理论,槽内束缚的电荷将增强埋层电场,进而提高器件耐压。电荷槽PSOI高压器件在提高耐压的基础上还能降低自热效应;(b)复合埋层SOI高压器件,其埋层由两层氧化物及其间多晶硅构成。该器件不仅利用两层埋氧承受耐压,而且多晶硅下界面的电荷增强第二埋氧层的电场,因而器件耐压提高。开发了基于SDB(Silicon Direct Bonding)技术的非平面埋氧层SOI材料的制备工艺,并研制出730V的双面电荷槽SOILDMOS和760V的复合埋层SOI器件,前者埋层电场从常规结构的低于120V/μm提高到300V/μm,后者第二埋氧层电场增至400V/μm以上。③提出薄硅层阶梯漂移区SOI高压器件新结构并建立其耐压解析模型该器件的漂移区厚度从源到漏阶梯增加。其原理是:在阶梯处引入新的电场峰,新电场峰调制漂移区电场并增强埋层电场,从而提高器件耐压。通过求解Poisson方程,建立阶梯漂移区SOI器件耐压解析模型。借助解析模型和数值仿真,研究了器件结构参数对电场分布和击穿电压的影响。结果表明:对tI=3μm,tS=0.5μm的2阶梯SOI器件,耐压比常规SOI结构提高一倍,且保持较低的导通电阻。仿真结果证实了解析模型的正确性。  相似文献   

9.
介绍了SOI材料结构技术用于高温电路的优势,分析了影响高温性能的物理效应和结构因素。为实现良好的高温性能,提出了沟道下用氮化铝作埋层以替代常规二氧化硅埋层的SOI器件新结构,并和以二氧化硅为埋层结构的器件特性进行了对比,对它们高温输出性能和沟道内晶格温度进行了研究分析,得出了具有指导意义的分析结果。  相似文献   

10.
为了减少经典SOI器件的自加热效应,首次成功地用外延方法制备以Si3N4薄膜为埋层的新结构SOSN,用HRTEM和SRP表征了SOI的新结构.实验结果显示,Si3N4层为非晶状态,新结构的SOSN具有良好的结构和电学性能.对传统SOI和新结构SOI的MOSFETs输出电流的输出特性和温度分布用TCAD仿真软件进行了模拟.模拟结果表明,新结构SOSN的MOSFET器件沟道温度和NDR效益都得到很大的降低,表明SOSN能够有效地克服自加热效应和提高MOSFET漏电流.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号