首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
通过对高炉内结瘤物的形状及成分的分析,并结合高炉内锌的循环原理,提示了攀钢高炉结瘤原因是原燃料中锌含量过高所致,并提出了应对措施.  相似文献   

2.
如今随着新时代的发展,我国经济的增长离不开高炉的推动。但在高炉生产过程中,原材料内往往会含有锌这种微量元素,当锌在高炉中不断的循环富集达到一定程度的时候就会给高炉生产带来非常严重影响和危害。本文对高炉中锌的产生来源展开了详细的研究,并对锌在高炉中的危害做出了详细的分析,在本文的最后对高炉中锌的控量防控提出了一定的对策。  相似文献   

3.
结合鞍钢及有关企业生产实际,阐述了高炉中碱金属、锌的影响和危害,并通过入炉原燃料、炉渣、粉尘等取样化验及对高炉的碱、锌负荷及收支平衡进行统计,掌握了碱金属和锌在高炉中的分布与来龙去脉,此外结合热力学分析进一步明确了碱金属和锌在高炉内的反应和循环过程,并提出了碱金属和锌富集的预防控制措施。  相似文献   

4.
为掌握鞍凌高炉锌负荷水平和锌在高炉内的循环富集规律,通过入炉原燃料、炉渣、粉尘等系统取样对鞍凌高炉的锌、碱负荷及收支平衡进行了统计,并对锌在高炉内的反应行为进行了热力学分析。结果表明:高炉入炉锌负荷为0.69kg/t,碱负荷为4.66kg/t,锌和碱金属的主要来源都是烧结矿,由烧结矿带入的锌量达到锌负荷的90.7%,带入的碱金属达到碱负荷的61.7%;支出方面锌主要随炉尘排出,碱金属主要随炉渣排出。此外结合热力学分析进一步明确了锌在高炉内的存在形式和循环过程,并提出了锌富集的预防控制措施。  相似文献   

5.
《炼铁》2016,(4)
基于高炉-烧结的锌循环富集数学模型,并结合宝钢锌负荷控制经验,定量化讨论了高炉锌循环富集程度,以及高炉锌负荷对燃料比的影响。结果表明:在烧结过程中使用回收高锌粉尘时,由于循环放大的作用,回收高锌粉尘使用比例高时,高炉锌负荷可能增高至3.5倍水平;高炉炉内的锌循环富集浓度至少为入炉时锌浓度的80倍;高炉锌负荷每增加0.10kg/t,燃料比上升1.68kg/t。  相似文献   

6.
由于微量有害元素锌的循环富集给高炉生产带来许多危害,通过调查分析找到高炉内锌的主要来源以及对高炉的危害,提出了控制有害元素的措施和建议。  相似文献   

7.
由于微量有害元素锌的循环富集给八钢高炉生产带来许多危害,通过调查分析找到了高炉内锌的主要来源,提出了控制有害元素锌的对策及建议。  相似文献   

8.
针对有害元素在高炉内的反应行为和对焦炭劣化的催化作用,分析了钾、钠、锌、铅、氯化物在高炉内的循环富集过程,重点探讨了其对焦炭热态性能的影响,进一步明确了几种有害元素对焦炭和高炉冶炼的危害性,并根据其循环富集特点提出了控制措施。  相似文献   

9.
由于锌的循环富集给高炉生产带来了许多危害,通过调查分析找到了高炉内锌的来源,并采取了控制措施。  相似文献   

10.
《炼铁》2015,(2)
针对目前高炉锌负荷过高的现状,结合武钢大型高炉高锌负荷生产实践,分析了锌在高炉内行为,以及武钢高炉内锌的来源和排出途径,提出大型高炉应对高锌负荷的操作措施。  相似文献   

11.
高炉煤气在冶金工业的应用研究   总被引:2,自引:0,他引:2  
高炉煤气是高炉炼铁的副产能源,在钢铁企业的能源结构中起着重要的作用.文章通过比较我国宝钢和日本新日铁高炉煤气的利用情况,提出钢铁企业高炉煤气利用的不同途径,并分析了提高高炉煤气利用率的措施,对钢铁企业充分利用高炉煤气提供了参考依据,同时也促进了节能和环保工作.  相似文献   

12.
《钢铁冶炼》2013,40(5):419-425
Abstract

Byproducts/wastes of iron- and steelmaking processes and steel scrap are the main sources of iron units recycled in the steel plants. Direct recycling of the iron oxide wastes (dusts and sludge) in the blast furnace (BF) is however hampered by its chemistry (>0·1%Zn in the charge). Vaporisation, condensation, oxidation and circulation of zinc may collectively lead to the accumulation in the furnace. Very fine particles are deposited on other particles that have high surface areas which diminish BF refractory life and impair the quality of high quality pig iron produced. For effective continuous recycling of iron units, it is necessary to identify their sources, determine their composition and evolve device and appropriate technology for the treatment of zinc bearing units. The present paper analyses the process of zinc accumulation in the BF and derives an algebraic model to determine the extent of the accumulation. On the basis of analysis of zinc base formation, its recirculation in the furnace and other related productive units, a homograph (alignment chart) of zinc accumulation is designed. The paper also outlines the feasible processes of zinc removal from the close-looped system (sinter plant–BF–sinter plant).  相似文献   

13.
钢铁厂生产的高炉灰、电炉炼钢粉尘等含锌固废污染严重,治理难度大.本文在介绍我国钢铁厂含锌灰产出及其主要成分的基础上,回顾了目前的含锌固废资源利用技术,并详细分析火法还原中的回转窑工艺和转底炉工艺及湿法工艺的原理、工艺流程、存在问题,从原料组成、主要设备设施、产品情况,以及投资和环保治理方面进行工艺对比分析,对今后含锌固...  相似文献   

14.
高炉污泥处理用的水力旋流设备   总被引:1,自引:0,他引:1  
SteinCallenfels JEvan 《钢铁》2004,39(1):59-62,58
高炉炉顶煤气中产生大量的粉尘。此粉尘被排放到废料场,但是,更具有吸引力的是通过烧结厂将此粉尘进行回收,再返回到高炉中。这些粉尘的某一部分,特别是细颗粒,含有0.4%~2%的锌和不同浓度的其他重金属。锌源于铁矿,但是,也有部分来自于钢厂的其他各种回收含铁废物,其中一些是来自于镀锌废钢。回收大部分重金属成分,特别是锌,对高炉工艺流程来说是不希望有的,因为在工厂锌平衡中引起锌增加。Corus Ijmuiden开发了一种水力旋流设备,用于将高炉粉尘分离出粗、细颗粒,并能在高炉中带入最大锌的量、回收含铁材料和排出富锌粉尘之间实现最经济的平衡。  相似文献   

15.
以高炉炼铁和高炉冶金焦炭的供应为主线,重点探讨了西欧钢铁行业的发展过程。文章对诸如铁水生产、高炉还原剂结构的发展、焦炭需求、焦炭质量要求以及焦炭生产等重点技术问题进行了介绍。西欧联合钢厂的现代化装备能够产出多个品种的优质钢材。高炉—转炉流程仍将是钢铁生产的主流工艺,因此焦炭业也将必不可少。还介绍了两种减少二氧化碳排放的炼铁新工艺。  相似文献   

16.
曾先喜  郭豪 《钢铁研究》2011,39(5):45-48
以生产高炉为基础,通过Rist操作线模型计算了"理想"高炉的还原剂消耗。针对"理想"高炉的计算和我国目前高炉碳排放潜能的分析,提出了在我国现有条件下,降低高炉燃料比是减排高炉碳排放的主要措施,然而考虑到整个钢铁厂的能量平衡,应该选择最佳的方法减少CO2排放量。氧气高炉、炉顶煤气循环、高炉喷吹废旧塑料以及使用预还原炉料都...  相似文献   

17.
刘元意 《山东冶金》1997,19(5):18-19
莱芜钢铁总厂第二铁厂2#750m3高炉在生产中采取提高烧结矿碱度、配用高品位进口矿、减少入炉粉末、稳定焦炭质量及稳定炉温、适当提高炉渣碱度、提高风温和顶压等一系列措施,使生铁含硅量由0.841%降为0.637%,生铁一级品率由42.67%提高到54.61%,高炉综合技术经济指标提高。  相似文献   

18.
张鲁芳 《烧结球团》2012,37(3):57-60
介绍了我国转底炉处理钢铁厂含锌粉尘技术,结合降低高炉锌负荷的几种方法以及转底炉和其它几种直接还原技术的比较,分析了转底炉直接还原技术处理钢铁厂含锌粉尘的优缺点,对转底炉技术提出了几点思考意见,以期为我国转底炉技术应用提供一点借鉴和参考。  相似文献   

19.
Carbon footprint is the mass of carbon formed in the full cycle of manufacturing one kind or another product. This carbon is included in greenhouse gases. During production of iron and steel are generated carbon monoxide and greenhouse gases: methane, and carbon dioxide. Methane and carbon monoxide burn to carbon dioxide by secondary energy resources. By this means, the carbon footprint by the production of iron and steel has determined by the weight of carbon dioxide formed in this production. As results of analysis of the processes of manufacture of iron and steel, it has revealed that the tandem of blast furnace with electric arc furnace is characterized by a lower value of integrated emissions of CO2 than the tandem of blast furnace with an oxygen converter. It was proposed to process of the cast iron made by one blast furnace, then in the oxygen converter, and, at last, in one or more electric arc furnaces. Moreover, the electric arc furnace is loaded by 30% of iron produced in blast furnace, and the remaining 70% are complemented by metal scrap. In the oxygen converter is loaded, the part of cast iron (75–85%), that remained after processing in the arc furnace. The converter is applied the metal scrap for full loading. Calculations of total emission of carbon dioxide for different triads of these units are made. Simultaneous use of oxygen converter with electric arc furnaces for cast iron smelting (obtained from one blast furnace) helps to reduce reliably the emission of carbon dioxide to 20% as it is follows from these calculations. This suggests that such a triad of used units conforms to green technology. Example of the use of mentioned triad is for a full load of the converter applied to metal scrap. The calculations total emissions of carbon dioxide for different triads of these units were performed. From these calculations it follows that the simultaneous use of oxygen converters after electric arc furnaces for smelting iron (obtained from one blast furnace), it helps to reduce the emission of carbon dioxide to 20%. This suggests that this triad of used units conforms to green technology. An example of using this triad is in the Magnitogorsk Iron and Steel Works, where along with the oxygen converter, electric arc furnaces with the use of locally produced electricity at burning fuel of secondary energy resources from units, in which the fuel is burnt. This practice can be recommended for a number of other metallurgical enterprises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号