首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Plant-measured data provided by the OECD/NEA VVER-1000 coolant transient benchmark programme were used to validate the DYN3D/RELAP5 and DYN3D/ATHLET coupled code systems. Phase 1 of the benchmark (V1000CT-1) refers to an experiment that was conducted during the commissioning of the Kozloduy NPP Unit 6 in Bulgaria. In this experiment, the fourth main coolant pump was switched on whilst the remaining three were running normal operating conditions. The experiment was conducted at 27.5% of the nominal level of the reactor power. The transient is characterized by a rapid increase in the primary coolant flow through the core, and as a consequence, a decrease of the space-dependent core inlet temperature. The control rods were kept in their original positions during the entire transient. The coupled simulations performed on both DYN3D/RELAP5 and DYN3D/ATHLET were based on the same reactor model, including identical main coolant pump characteristics, boundary conditions, benchmark-specified nuclear data library and nearly identical nodalization schemes. In addition to validation of the coupled code systems against measured data, a code-to-code comparison between simulation results has also been performed to evaluate the respective thermal hydraulic models of the system codes RELAP5 and ATHLET.  相似文献   

2.
超临界水堆系统分析程序的改进   总被引:1,自引:1,他引:0  
针对超临界水堆特殊的水物性参数和独立的慢化剂通道设计,对堆芯计算程序PARCS和热工水力程序RELAP5进行了适应性改造。使用改造后的耦合程序PARCS/RELAP5分析了美国超临界水冷参考堆,发现了慢化剂逆向流动和最高功率组件不同于最高外表面包层温度组件的现象,根据这些经验,对中国的超临界水堆分析程序的改进和研发提出了相关意见。  相似文献   

3.
Plant-measured data provided within the specification of the OECD/NEA VVER-1000 coolant transient benchmark (V1000CT) were used to validate the DYN3D/RELAP5 and DYN3D/ATHLET coupled code systems. Phase 1 of the benchmark (V1000CT-1) refers to the MCP (main coolant pump) switching on experiment conducted in the frame of the plant-commissioning activities at the Kozloduy NPP Unit 6 in Bulgaria. The experiment was started at the beginning of cycle (BOC) with average core expose of 30.7 effective full power days (EFPD), when the reactor power was at 27.5% of the nominal level and three out of four MCPs were operating. The transient is characterized by a rapid increase in the primary coolant flow through the core and, as a consequence, a decrease of the space-dependent core inlet temperature. Both DYN3D/RELAP5 and DYN3D/ATHLET analyses were based on the same reactor model, including identical MCP characteristics, boundary conditions, benchmark-specified nuclear data library and nearly identical nodalization schemes. For an adequate modelling of the redistribution of the coolant flow in the reactor pressure vessel during the transient a simplified mixing model for the DYN3D/ATHLET code was developed and validated against a computational fluid dynamics calculation.

The results of both coupled code calculations are in good agreement with the available experimental data. The discrepancies between experimental data and the results of both coupled code calculations do not exceed the accuracy of the measurement data. This concerns the initial steady-state data as well as the time histories during the transient. In addition to the validation of the coupled code systems against measured data, a code-to-code comparison between simulation results has been performed to evaluate relevant thermal hydraulic models of the system codes RELAP5 and ATHLET and to explain differences between the calculation results.  相似文献   


4.
Incorporation of full three-dimensional models of the reactor core into system thermal–hydraulic transient codes allows better estimation of interactions between the core behavior and plant dynamics. Considerable efforts have been made in various countries and organizations to verify and validate the capability of the so-called coupled codes technique. For these purposes appropriate Light Water Reactor (LWR) transient benchmarks based upon programmed transients performed in Nuclear Power Plants (NPP) were recently developed on a higher ‘best-estimate’ level. The reference problem considered in the current framework is a Main Coolant Pump (MCP) switching-on transient in a VVER1000 NPP. This event is characterized by a positive reactivity addition as consequence of the increase of the core flow. In the current study the coupled RELAP5/PARCS code is used to reproduce the considered test. Results of calculation were assessed against experimental data and also through the code-to-code comparison.  相似文献   

5.
本工作开发了PARCS的先进热工水力求解器PATHS,可对沸水堆进行热工水力稳态模拟。与RELAP5的计算结果进行验证,结果表明,PATHS的计算结果与RELAP5的基本一致。将PATHS与PARCS进行耦合,对SMART反应堆及Peach Bottom 2 OECD Turbine Trip基准题进行计算,结果表明,PARCS/PATHS耦合程序计算结果准确有效,能用于沸水堆的稳态物理热工耦合计算。  相似文献   

6.
7.
Nuclear power plant Safety analysis using coupled 3D neutron kinetics/thermal-hydraulic codes technique is increasingly used nowadays. Actually, the use of this technique allows getting less conservatism and more realistic simulations of the physical phenomena. The challenge today is oriented toward the application of this technique to the operating conditions of nuclear research reactors. In the current study, a three-Dimensional Neutron Kinetics and best estimate Thermal-Hydraulic model based upon the coupled PARCS/RELAP5 codes has been developed and applied for a heavy water research reactor. The objective is to perform safety analysis related to design accidents of this reactor types. In the current study two positive reactivity insertion transients are considered, SCRAM protected and self-limiting power excursion cases. The results of the steady state calculations were compared with results obtained from conventional diffusion codes, while transient calculations were assessed using the point kinetic model of the RELAP5 code. Through this study, the applicability and the suitability of using the coupled code technique with respect to the classical models are emphasized and discussed.  相似文献   

8.
The RELAP5 code is widely used for thermal hydraulic studies of commercial nuclear power plants. Current investigations and code adaptations have demonstrated that the RELAP5 code can be also applied for thermal hydraulic analysis of nuclear research reactors with good predictions. Therefore, as a contribution to the assessment of RELAP5/MOD3.3 for research reactors analysis, this work presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor at 50 kilowatts (kW) of power operation. The reactor is located in the Nuclear Technology Development Center (CDTN), Brazil. It is a 250 kW, light water moderated and cooled, graphite-reflected, open pool type research reactor. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of the RELAP5 model validation. The RELAP5 results were also compared with calculated data from the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The results obtained have shown that the RELAP5 model for the IPR-R1 TRIGA reproduces the actual steady-state reactor behavior in good agreement with the available data.  相似文献   

9.
PWR冷管段1%小破口失水事故实验研究   总被引:1,自引:1,他引:0  
在高压综合实验装置(HPITF)上进行核电厂反应堆一次系统冷管段小破口失水事故(SBLOCA)模拟实验,破口方向为冷管段底部,破口面积为1%(NSB-7工况)实验再现了核电厂发生小破口失水事故时的热工水力学现象,实验结果与RELAP5/MOD2分析程序的计算结果上比较,验证了该程序对小破口失水事故的分析能力。  相似文献   

10.
针对一体化压水堆核动力装置,以核动力装置瞬态最佳估算程序RELAP5/MOD3为基础,采用两群三维时空中子动力学模型替代点堆模型,并建立三维空间内中子物理与热工水力的耦合模型,研制相应的计算程序。对一体化核动力装置强迫循环向自然循环转换过程进行仿真模拟。在过渡过程中,一体化压水堆核动力装置反应堆功率变化幅度较大,冷却剂流量的变化对一回路温度影响较大。  相似文献   

11.
In the last few years the possible role of accelerator driver systems (ADS) for effective transmutation strategies with fully closed cycles has received increased attention due to their potential to improve the flexibility and safety characteristics of transmutation systems. The substantial difference between the neutron kinetics and dynamic behavior of ADS and conventional critical reactors has given rise to a wide international consensus on the need of an experimental program to improve their knowledge and to validate calculation methods. To this end the international cooperation TRADE proposed a sub-critical experiment based on the coupling of a TRIGA reactor in sub-critical core configuration with a proton accelerator (cyclotron) by means of a neutron spallation target. The experiment was initially conceived in the RC1-TRIGA reactor located at the ENEA Center of CASACCIA (Rome, Italy) to demonstrate the feasibility of the accelerator driven system (ADS) concept at a representative power. This article presents a preliminary study performed with the RELAP5/PARCS code on the dynamic behavior of such a system in order to demonstrate the code capability to support the design of the experiment and the safety analysis. The specific code version used joins the well known capability of RELAP5 to treat light water reactors with the potentiality of PARCS modified by ENEA to simulate the three-dimensional neutronics of sub-critical systems, i.e. to treat external neutron sources. PARCS modifications are preliminary assessed against a simple analytical solution of the sub-critical neutronics of the experiment based on the kinetics pseudo-potentials method. A quite detailed model for the coupled code is developed in order to realistically evaluate both the thermal feedback effects, the control rod action and the external source strength changes. A wide range of operational and accidental transients of the sub-critical reactor are simulated with the coupled model in order to obtain a first system response to a number of reactor elementary events at different subcriticality levels. The calculation results show a high qualitative agreement with the sub-critical system physical theory underlining how the numerical model developed could be a useful tool for the definition of the operational procedures and the investigation of accidental conditions; moreover the accidental transient trends highlight the inherent safety behavior of the TRIGA research reactors that makes them extremely suitable for the coupling of the different components with a quite simple licensing procedures.  相似文献   

12.
一回路承压管道蠕变是压水堆核电厂严重事故重要现象之一。针对小型压水堆,本文基于SCDAP/RELAP5程序开发了严重事故分析模型,利用实验拟合方法得到了一回路主管道(SA321)、自然循环式蒸汽发生器传热管(00Cr25Ni35Al Ti)两种材料蠕变预测分析模型,改进了SCDAP/RELAP5程序蠕变预测分析功能模块,并通过假想事故序列验证了SA321、00Cr25Ni35Al Ti蠕变预测分析模型的合理性。为后续开展小型压水堆严重事故下一回路承压管道蠕变规律研究提供基础参考。  相似文献   

13.
Nowadays, the coupled codes technique, which consists in incorporating three-dimensional (3D) neutron modeling of the reactor core into system codes, is extensively used for carrying out best estimate (BE) simulation of complex transient in nuclear power plants (NPP). This technique is particularly suitable for transients that involve core spatial asymmetric phenomena and strong feedback effects between core neutronics and reactor loop thermal-hydraulics. Such complex interactions are encountered under normal and abnormal operating conditions of a boiling water reactors (BWR). In such reactors Oscillations may take place owing to the dynamic behavior of the liquid-steam mixture used for removing the thermal power. Therefore, it is necessary to be able to detect in a reliable way these oscillations. The purpose of this work is to characterize one aspect of these unstable behaviors using the coupled codes technique. The evaluation is performed against Peach Bottom-2 low-flow stability tests number 3 using the coupled RELAP5/PARCS code. In this transient dynamically complex neutron kinetics coupling with thermal-hydraulics events take place in response to a core pressure perturbation. The calculated coupled code results are herein assessed and compared against the available experimental data.  相似文献   

14.
RELAP5 code was developed at the Idaho National Environmental and Engineering Laboratory and it is widely used for thermal hydraulic studies of commercial nuclear power plants and, currently, it has been also applied for thermal hydraulic analysis of nuclear research systems with good predictions. This work is a contribution to the assessment of RELAP5/3.3 code for research reactors analysis. It presents steady-state and transient calculation results performed using a RELAP5 model to simulate the IPR-R1 TRIGA research reactor conditions operating at 50 and 100 kW. The reactor is located at the Nuclear Technology Development Centre (CDTN), Brazil. The development and the assessment of a RELAP5 model for the IPR-R1 TRIGA are presented. Experimental data were considered in the process of code-to-data validation. The RELAP5 results were also compared with calculation performed using the STHIRP-1 (Research Reactors Thermal Hydraulic Simulation) code. The use of a cross flow model has been essential to improve results in the transient condition respect to preceding investigations.  相似文献   

15.
The modeling of complex transients in nuclear power plants (NPP) remains a challenging topic for best estimate three-dimensional coupled code computational tools. This technique is, nowadays, extensively used for simulating transients that involve core spatial asymmetric phenomena and strong feedback effects between core neutronics and reactor loop thermal–hydraulics. In this framework, the Peach Bottom BWR turbine trip experiment 2 is considered. The test involves a rapid positive reactivity addition into the core generated by a water hammer load. To perform a numerical simulation of such phenomenon a reference case was calculated using the coupled code RELAP5/PARCS. An overall data comparison shows good agreement between calculated and measured pressure wave trend in the core region. However, the predicted power response during the excursion phase did not match correctly the experimental tendency. For this purpose, a series of sensitivity analyses have been carried out to identify the most probable reasons of such discrepancy. It was found out that the uncertainties related to the cross-sections modeling and to the thermal–hydraulic closure relationships are the main source of the incorrect power feedback response during the transient.  相似文献   

16.
An advanced thermal hydraulic code is established on the basis of RELAP5/MOD3.3 code for the investigation of the thermal hydraulic behavior of nuclear power systems. The RELAP5 code is modified by adding a module calculating the effect of rolling motion and introducing new flow and heat transfer models. The experimental data are used to validate the theoretical models and calculation results. It is shown that the advanced flow and heat transfer models could correctly predict the frictional resistance and heat transfer coefficients in rolling motion. The thermal hydraulic code is used to simulate the operation of a natural circulation system in rolling motion. The calculation results are in good agreement with experimental data. The relative discrepancies between calculation results and experimental data are less than 5%.  相似文献   

17.
LinAo Nuclear Power Plant (NPP) Phase II is a newly-built CPR1000 reactor in China, and many new technologies including the incorporation of digital control system (DCS) substituting traditional analog control systems have been applied. This is the first time for Chinese engineers to setup and adjust the DCS configurations. Both the lack of the operating experiences and the plant safety requirements from the government make a necessity of the closed-loop DCS test before commercial plant operation. The most practical way is to build a digital plant as the controlled target and this digital plant is used to provide the plant thermal–hydraulic parameters and feedbacks for the DCS. Though the RELAP5 code has been developed for the best-estimate transient simulation of light water reactor coolant systems and is used worldwide, its functionality is too limited to implement a digital plant, such as the simulation of the complicated plant control and protection systems, the 3-dimensional neutron kinetics and the fluid network for the plant auxiliary systems. To overcome these drawbacks, a RELAP5-based extensible simulator has been built to satisfy the new requirements for the implementation of a digital plant. Any simulation code of desired functionality can be integrated into this simulator as a simulation module once it applies a set of well-defined data exchange interfaces. At the present stage, a RELAP5 module, a control system modeling module, a software–hardware data bridge module and some other auxiliary modules have been integrated into the simulator. There are more than 60 systems that need to be tested with the DCS in LinAo Phase II, and the whole testing work is separated into several phases. In this paper, we take the testing of the pressure control system and water level control system of pressurizer as example. A typical transient of 10% load step change from 100%FP (full power) to 90%FP was performed for the closed-loop DCS test. The necessity and capability of this RELAP5-based engineering simulator has been demonstrated.  相似文献   

18.
Nowadays, new concepts of nuclear reactors have been projected to work with mechanisms of natural circulation (NC). However, NC systems are very susceptible to several kinds of instabilities being necessary careful studies about such systems. In this work, a theoretical investigation about BWR stability during a transient of recirculation pump trip bringing the reactor to operate at NC conditions is presented. The simulations were performed using the RELAP5/MOD3.3 thermal-hydraulic code and the PARCS/2.4 3D neutron-kinetic code in a coupled way to predict the transient results. The power time evolution and the related thermal-hydraulic parameters were investigated during the transient to analyze the behavior of the reactor for this special operation condition of NC.  相似文献   

19.
The current work involves thermal hydraulic calculation of Lithium Lead Cooling System (LLCS) for the Indian test blanket module (TBM) for testing in International Thermonuclear Experimental reactor (ITER). It uses the RELAP portion of RELAP/SCDAPSIM/MOD4.0. Lithium-lead eutectic (LLE) has been used as multiplier, breeder and coolant in TBM. Thermodynamic and transport properties of the LLE have been incorporated into the code. The main focus of this study is to check the heat transfer capability of LLE as coolant for TBM system for steady state and the considered anticipated operational occurrences (AOO's), namely, loss of heat source, loss of primary flow and loss of secondary flow. The six heat transfer correlation (reported for liquid metals in the literature) has been tested for steady state analysis of LLCS loop and results are roughly same for all of them. A good agreement has been observed between the operating conditions of LLCS with those of RELAP5 calculations. Results from transient calculations show that a maximum temperature of 875 K is attained during a 300 s loss of primary flow (LLE).  相似文献   

20.
《Progress in Nuclear Energy》2012,54(8):1095-1104
Nowadays, new concepts of nuclear reactors have been projected to work with mechanisms of natural circulation (NC). However, NC systems are very susceptible to several kinds of instabilities being necessary careful studies about such systems. In this work, a theoretical investigation about BWR stability during a transient of recirculation pump trip bringing the reactor to operate at NC conditions is presented. The simulations were performed using the RELAP5/MOD3.3 thermal-hydraulic code and the PARCS/2.4 3D neutron-kinetic code in a coupled way to predict the transient results. The power time evolution and the related thermal-hydraulic parameters were investigated during the transient to analyze the behavior of the reactor for this special operation condition of NC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号