首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The demand for a new generation of flexible, portable, and high‐capacity power sources increases rapidly with the development of advanced wearable electronic devices. Here we report a simple process for large‐scale fabrication of self‐standing composite film electrodes composed of NiCo2O4@carbon nanotube (CNT) for supercapacitors. Among all composite electrodes prepared, the one fired in air displays the best electrochemical behavior, achieving a specific capacitance of 1,590 F g?1 at 0.5 A g?1 while maintaining excellent stability. The NiCo2O4@CNT/CNT film electrodes are fabricated via stacking NiCo2O4@CNT and CNT alternately through vacuum filtration. Lightweight, flexible, and self‐standing film electrodes (≈24.3 µm thick) exhibit high volumetric capacitance of 873 F cm?3 (with an areal mass of 2.5 mg cm?2) at 0.5 A g?1. An all‐solid‐state asymmetric supercapacitor consists of a composite film electrode and a treated carbon cloth electrode has not only high energy density (≈27.6 Wh kg?1) at 0.55 kW kg?1 (including the weight of the two electrodes) but also excellent cycling stability (retaining ≈95% of the initial capacitance after 5000 cycles), demonstrating the potential for practical application in wearable devices.  相似文献   

2.
Flexible supercapacitors with high power density, flexibility, and durability have shown enormous potential for smart electronics. Here, a continuous graphitic carbon nitride polyhedron assembly for flexible supercapacitor that is prepared by pyrolysis of carbon nanotubes wired zeolitic imidazolate framework‐8 (ZIF‐8) composites under nitrogen is reported. It exhibits a high specific capacitance of 426 F g?1 at current density of 1 A g?1 in 1 m H2SO4 and excellent stability over 10 000 cycles. The remarkable performance results from the continuous hierarchical structure with average pore size of 2.5 nm, high nitrogen‐doping level (17.82%), and large specific surface area (920 m2 g?1). Furthermore, a flexible supercapacitor is developed by constructing the assembly with interpenetrating polymer network electrolyte. Stemming from the synergistic effect of high‐performance electrode and highly ion‐conductive electrolyte, superior energy density of 59.40 Wh kg?1 at 1 A g?1 is achieved. The device maintains a stable energy supply under cyclic deformations, showing wide application in flexible and even wearable conditions. The work paves a new way for designing pliable electrode with excellent electronic and mechanic property for long‐lived flexible energy storage devices.  相似文献   

3.
High energy density, durability, and flexibility of supercapacitors are required urgently for the next generation of wearable and portable electronic devices. Herein, a novel strategy is introduced to boost the energy density of flexible soild‐state supercapacitors via rational design of hierarchically graphene nanocomposite (GNC) electrode material and employing an ionic liquid gel polymer electrolyte. The hierarchical graphene nanocomposite consisting of graphene and polyaniline‐derived carbon is synthesized as an electrode material via a scalable process. The meso/microporous graphene nanocomposites exhibit a high specific capacitance of 176 F g?1 at 0.5 A g?1 in the ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) with a wide voltage window of 3.5 V, good rate capability of 80.7% in the range of 0.5–10 A g?1 and excellent stability over 10 000 cycles, which is attributed to the superior conductivity (7246 S m?1), and quite large specific surface area (2416 m2 g?1) as well as hierarchical meso/micropores distribution of the electrode materials. Furthermore, flexible solid‐state supercapacitor devices based on the GNC electrodes and gel polymer electrolyte film are assembled, which offer high specific capacitance of 180 F g?1 at 1 A g?1, large energy density of 75 Wh Kg?1, and remarkable flexible performance under consecutive bending conditions.  相似文献   

4.
Graphene derivatives are promising candidates as electrode materials in supercapacitor cells, therefore, functionalization strategies are pursued to improve their performance. A scalable approach is reported for preparing a covalently and homogenously functionalized graphene with iron tetraaminophthalocyanine (FePc‐NH2) with a high degree of functionalization. This is achieved by exploiting fluorographene's reactivity with the diethyl bromomalonate, producing graphene‐dicarboxylic acid after hydrolysis, which is conjugated with FePc‐NH2. The material exhibits an ultrahigh gravimetric specific capacitance of 960 F g?1 at 1 A g?1 and zero losses upon charging–discharging cycling. The energy density of 59 Wh kg?1 is eminent among supercapacitors operating in aqueous electrolytes with graphene‐based electrode materials. This is attributed to the structural and functional synergy of the covalently bound components, giving rise to a zwitterionic surface with extensive π–π stacking, but not graphene restacking, all being very beneficial for charge and ionic transport. The safety of the proposed system, owing to the benign Na2SO4 aqueous electrolyte, the high capacitance, energy density, and potential of preparing the electrode material on a large‐scale and at low cost make the reported strategy very attractive for development of supercapacitors based on the covalent attachment of suitable molecules onto graphene toward high‐synergy hybrids.  相似文献   

5.
Spinel‐type NiCo2O4 (NCO) and NiCo2S4 (NCS) polyhedron architectures with sizes of 500–600 nm and rich mesopores with diameters of 1–2 nm are prepared facilely by the molecular design of Ni and Co into polyhedron‐shaped zeolitic imidazolate frameworks as solid precursors. Both as‐prepared NCO and NCS nanostructures exhibit excellent pseudocapacitance and stability as electrodes in supercapacitors. In particular, the exchange of O2? in the lattice of NCO with S2? obviously improves the electrochemical performance. NCS shows a highly attractive capacitance of 1296 F g?1 at a current density of 1 A g?1, ultrahigh rate capability with 93.2% capacitance retention at 10 A g?1, and excellent cycling stability with a capacitance retention of 94.5% after cycling at 1 A g?1 for 6000 times. The asymmetric supercapacitor with an NCS negative electrode and an active carbon positive electrode delivers a very attractive energy density of 44.8 Wh kg?1 at power density 794.5 W kg?1, and a favorable energy density of 37.7 Wh kg?1 is still achieved at a high power density of 7981.1 W kg?1. The specific mesoporous polyhedron architecture contributes significantly to the outstanding electrochemical performances of both NCO and NCS for capacitive energy storage.  相似文献   

6.
In most electrochemical energy storage and conversion devices, nanostructured carbon materials play essential roles. One‐step carbonization of some biomass materials has recently been demonstrated as a promising route to produce high surface area carbon without introducing extra activation agents. Here, this study shows the importance of physiologic function of plant organs in the microstructure and porosity of formed carbon nanomaterials. The lotus stem pyrolyzed carbon at 800 °C presents a specific surface area of 1610 m2 g?1, about 55% higher than the porous carbon from the leaves. A similar organ‐dependent effect in the porosity of the pyrolyzed carbon is also observed in other plants with wide disparity in the stems and leaves, such as celery and asparagus lettuce, largely due to the higher metal ion content in the stems, which plays the role of ion transportation for plants. Furthermore, optimizing the celery stem pyrolyzing condition can produce carbon with specific surface area as high as 2194 m2 g?1 without any extra activation process. As a supercapacitor electrode, the porous carbon pyrolyzed from lotus stems exhibits a specific capacitance of 174 F g?1 at a scan rate of 5 mV s?1 in 6 M KOH aqueous electrolyte, with 72% capacitance retention at a high scan rate of 500 mV s?1 and good stability over 10 000 cycles.  相似文献   

7.
The detonation nanodiamond is a versatile low‐cost nanomaterial with tunable properties and surface chemistry. In this work, it is shown how the application of nanodiamond (ND) can greatly increase the performance of electrochemically active polymers, such as polyaniline (PANI). Symmetric supercapacitors containing PANI‐ND nanocomposite electrodes with 3–28 wt% ND show dramatically improved cycle stability and higher capacitance retention at fast sweep rate than pure PANI electrodes. Contrary to other PANI‐carbon nanocomposites, specific capacitance of the selected PANI electrodes with embedded ND increases after 10 000 galvanostatic cycles and reaches 640 F g?1, when measured in a symmetric two‐electrode configuration with 1 M H2SO4 electrolyte. The demonstrated specific capacitance is 3–4 times higher than that of the activated carbons and more than 15 times higher than that of ND and onion‐like carbon (OLC).  相似文献   

8.
Asymmetric supercapacitors with high energy density are fabricated using a self‐assembled reduced graphene oxide (RGO)/MnO2 (GrMnO2) composite as a positive electrode and a RGO/MoO3 (GrMoO3) composite as a negative electrode in safe aqueous Na2SO4 electrolyte. The operation voltage is maximized by choosing two metal oxides with the largest work function difference. Because of the synergistic effects of highly conductive graphene and highly pseudocapacitive metal oxides, the hybrid nanostructure electrodes exhibit better charge transport and cycling stability. The operation voltage is expanded to 2.0 V in spite of the use of aqueous electrolyte, revealing a high energy density of 42.6 Wh kg?1 at a power density of 276 W kg?1 and a maximum specific capacitance of 307 F g?1, consequently giving rise to an excellent Ragone plot. In addition, the GrMnO2//GrMoO3 supercapacitor exhibits improved capacitance with cycling up to 1000 cycles, which is explained by the development of micropore structures during the repetition of ion transfer. This strategy for the choice of metal oxides provides a promising route for next‐generation supercapacitors with high energy and high power densities.  相似文献   

9.
Layered H2Ti6O13‐nanowires are prepared using a facile hydrothermal method and their Li‐storage behavior is investigated in non‐aqueous electrolyte. The achieved results demonstrate the pseudocapacitive characteristic of Li‐storage in the layered H2Ti6O13‐nanowires, which is because of the typical nanosize and expanded interlayer space. The as‐prepared H2Ti6O13‐nanowires have a high capacitance of 828 F g?1 within the potential window from 2.0 to 1.0 V (vs. Li/Li+). An asymmetric supercapacitor with high energy density is developed successfully using H2Ti6O13‐nanowires as a negative electrode and ordered mesoporous carbon (CMK‐3) as a positive electrode in organic electrolyte. The asymmetric supercapacitor can be cycled reversibly in the voltage range of 1 to 3.5 V and exhibits maximum energy density of 90 Wh kg?1, which is calculated based on the mass of electrode active materials. This achieved energy density is much higher than previous reports. Additionally, H2Ti6O13//CMK‐3 asymmetric supercapacitor displays the highest average power density of 11 000 W kg?1. These results indicate that the H2Ti6O13//CMK‐3 asymmetric supercapacitor should be a promising device for fast energy storage.  相似文献   

10.
While vanadium oxides have many attractive pseudocapacitive features for energy storage, their applications are severely limited by the poor electronic conductivity and low specific surface area. To overcome these limitations, a scalable, free‐standing film electrode composed of intertwined V2O5 nanowires and carbon nanotubes (CNTs) using a blade coating process has been prepared. The unique architecture of this hybrid electrode greatly facilitates electronic transport along CNTs while maintaining rapid ion diffusion within V2O5 nanowires and fast electron transfer across the V2O5/CNTs interfaces. When tested in a neutral aqueous electrolyte, this hybrid film electrode demonstrates a volumetric capacitance of ≈460 F cm?3. Moreover, a symmetric capacitor based on two identical film electrodes displays a wide operation voltage window of 1.6 V, delivering a volumetric energy density as high as 41 Wh L?1.  相似文献   

11.
Pseudocapacitors hold great promise as charge storage systems that combine battery‐level energy density and capacitor‐level power density. The utilization of pseudocapacitive material, however, is usually restricted to the surface due to poor electrode kinetics, leading to less accessible charge storage sites and limited capacitance. Here, tin oxide is successfully endowed with outstanding pseudocapacitance and fast electrode kinetics in a negative potential window by engineering oxygen‐deficient homo‐interfaces. The as‐prepared SnO2?x@SnO2?x electrode yields a specific capacitance of 376.6 F g?1 at the current density of 2.5 A g?1 and retains 327 F g?1 at a high current density of 80 A g?1. The theoretical calculation reveals that the oxygen defects are more favorable at homo‐interfaces than at the surface due to the lower defect formation energy. Meanwhile, as compared with the surface, the homo‐interface possesses more stable Li+ storage sites that are readily accessed by Li+ due to the occurrence of oxygen vacancies, enabling outstanding pseudocapacitance as well as high rate capability. This oxygen‐deficient homo‐interface design opens up new opportunities to develop high‐energy and power pseudocapacitors.  相似文献   

12.
A new type of atom‐thin carbon nanomesh clusters (CMCs) is prepared through a self‐sacrificial and morphology‐reserved thermal transformation of electrodeposited zinc coordination polymer (Zn‐CP). Such a unique structure can effectively inhibit the sheet stacking due to the self‐formed cluster morphology of Zn‐CP. The clusters are composed of nitrogen‐doped, continuous, interconnected, one‐/two‐atom‐thick carbon nanosheets, which not only effectively inhibit the sheet stacking but also significantly benefit ion transport. As a result, as active electrode material of supercapacitor in aqueous electrolytes, the resultant nitrogen‐doped CMC (N‐CMC) yields a capacitance of up to 984 F g?1 at 0.5 A g?1 and excellent cycling stability with 137% of its initial capacitance after 40 000 cycles, both higher than most of reported graphene‐based and carbon‐based electrode materials. On the other hand, the final N‐doped CMC also exhibits superior electrocatalytic activities for oxygen reduction reaction.  相似文献   

13.
Graphene quantum dots (GQDs) have attracted tremendous research interest due to the unique properties associated with both graphene and quantum dots. Here, a new application of GQDs as ideal electrode materials for supercapacitors is reported. To this end, a GQDs//GQDs symmetric micro‐supercapacitor is prepared using a simple electro‐deposition approach, and its electrochemical properties in aqueous electrolyte and ionic liquid electrolyte are systematically investigated. The results show that the as‐made GQDs micro‐supercapacitor has superior rate capability up to 1000 V s?1, excellent power response with very short relaxation time constant (τ0 = 103.6 μs in aqueous electrolyte and τ0 = 53.8 μs in ionic liquid electrolyte), and excellent cycle stability. Additionally, another GQDs//MnO2 asymmetric supercapacitor is also built using MnO2 nanoneedles as the positive electrode and GQDs as the negative electrode in aqueous electrolyte. Its specific capacitance and energy density are both two times higher than those of GQDs//GQDs symmetric micro‐supercapacitor in the same electrolyte. The results presented here may pave the way for a new promising application of GQDs in micropower suppliers and microenergy storage devices.  相似文献   

14.
A novel three‐electrode electrolyte supercapacitor (electric double‐layer capacitor [EDLC]) architecture in which a symmetrical interdigital “working” two‐electrode micro‐supercapacitor array (W‐Cap) is paired with a third “gate” electrode that reversibly depletes/injects electrolyte ions into the system controlling the “working” capacity effectively is described. All three electrodes are based on precursor‐derived nanoporous carbons with well‐defined specific surface area (735 m2 g?1). The interdigitated architecture of the W‐Cap is precisely manufactured using 3D printing. The W‐Cap operating with a proton conducting PVA/H2SO4‐hydrogel electrolyte and high capacitance (6.9 mF cm?2) can be repeatedly switched “on” and “off”. By applying a low DC bias potential (?0.5 V) at the gate electrode, the AC electroadsorption in the coupled interdigital nanoporous carbon electrodes of the W‐Cap is effectively suppressed leading to a stark capacity drop by two orders of magnitude from an “on” to an “off” state. The switchable micro‐supercapacitor is the first of its kind. This general concept is suitable for implementing a broad range of nanoporous materials and advanced electrolytes expanding its functions and applications in future. The integration of intelligent functions into EDLC devices has extensive implications for diverse areas such as capacitive energy management, microelectronics, iontronics, and neuromodulation.  相似文献   

15.
Hierarchical porous carbon (HPC, DUT‐106) with tailored pore structure is synthesized using a versatile approach based on ZnO nanoparticles avoiding limitations present in conventional silica hard templating approaches. The benefit of the process presented here is the removal of all pore building components by pyrolysis of the ZnO/carbon composite without any need for either toxic/reactive gases or purification of the as‐prepared hierarchical porous carbon. The carbothermal reduction process is accompanied by an advantageous growing of distinctive micropores within the thin carbon walls. The resulting materials show not only high internal porosity (total pore volume up to 3.9 cm3 g?1) but also a large number of electrochemical reaction sites due to their remarkably high specific surface area (up to 3060 m2 g?1), which renders them particularly suitable for the application as sulfur host material. Applied in the lithium‐sulfur battery, the HPC/sulfur composite exhibits a capacity of >1200 mAh g?1‐sulfur (>750 mAh g?1 electrode) at a high sulfur loading of ≥ 3 mg cm?2 as well as outstanding rate capability. In fact, this impressive performance is achieved even using a low amount of electrolyte (6.8 μl mg?1 sulfur) allowing for further weight reduction and maintenance of high energy density on cell level.  相似文献   

16.
The increasing demand for efficient energy storage and conversion devices has aroused great interest in designing advanced materials with high specific surface areas, multiple holes, and good conductivity. Here, we report a new method for fabricating a hierarchical porous carbonaceous aerogel (HPCA) from renewable seaweed aerogel. The HPCA possesses high specific surface area of 2200 m2 g?1 and multilevel micro/meso/macropore structures. These important features make HPCA exhibit a reversible lithium storage capacity of 827.1 mAh g?1 at the current density of 0.1 A g?1, which is the highest capacity for all the previously reported nonheteroatom‐doped carbon nanomaterials. It also shows high specific capacitance and excellent rate performance for electric double layer capacitors (260.6 F g?1 at 1 A g?1 and 190.0 F g?1 at 50 A g?1), and long cycle life with 91.7% capacitance retention after 10 000 cycles at 10 A g?1. The HPCA also can be used as support to assemble Co3O4 nanowires (Co3O4@HPCA) for constructing a high performance pseudocapacitor with the maximum specific capacitance of 1167.6 F g?1 at the current density of 1 A g?1. The present work highlights the first example in using prolifera‐green‐tide as a sustainable source for developing advanced carbon porous aerogels to achieve multiple energy storage.  相似文献   

17.
A novel hierarchical nanotube array (NTA) with a massive layered top and discretely separated nanotubes in a core–shell structure, that is, nickel–cobalt metallic core and nickel–cobalt layered double hydroxide shell (Ni?Co@Ni?Co LDH), is grown on carbon fiber cloth (CFC) by template‐assisted electrodeposition for high‐performance supercapacitor application. The synthesized Ni?Co@Ni?Co LDH NTAs/CFC shows high capacitance of 2200 F g?1 at a current density of 5 A g?1, while 98.8% of its initial capacitance is retained after 5000 cycles. When the current density is increased from 1 to 20 A g?1, the capacitance loss is less than 20%, demonstrating excellent rate capability. A highly flexible all‐solid‐state battery‐type supercapacitor is successfully fabricated with Ni?Co LDH NTAs/CFC as the positive electrode and electrospun carbon fibers/CFC as the negative electrode, showing a maximum specific capacitance of 319 F g?1, a high energy density of 100 W h kg?1 at 1.5 kW kg?1, and good cycling stability (98.6% after 3000 cycles). These fascinating electrochemical properties are resulted from the novel structure of electrode materials and synergistic contributions from the two electrodes, showing great potential for energy storage applications.  相似文献   

18.
A novel hierarchical nanotube array (NTA) with a massive layered top and discretely separated nanotubes in a core–shell structure, that is, nickel–cobalt metallic core and nickel–cobalt layered double hydroxide shell (Ni? Co@Ni? Co LDH), is grown on carbon fiber cloth (CFC) by template‐assisted electrodeposition for high‐performance supercapacitor application. The synthesized Ni? Co@Ni? Co LDH NTAs/CFC shows high capacitance of 2200 F g?1 at a current density of 5 A g?1, while 98.8% of its initial capacitance is retained after 5000 cycles. When the current density is increased from 1 to 20 A g?1, the capacitance loss is less than 20%, demonstrating excellent rate capability. A highly flexible all‐solid‐state battery‐type supercapacitor is successfully fabricated with Ni? Co LDH NTAs/CFC as the positive electrode and electrospun carbon fibers/CFC as the negative electrode, showing a maximum specific capacitance of 319 F g?1, a high energy density of 100 W h kg?1 at 1.5 kW kg?1, and good cycling stability (98.6% after 3000 cycles). These fascinating electrochemical properties are resulted from the novel structure of electrode materials and synergistic contributions from the two electrodes, showing great potential for energy storage applications.  相似文献   

19.
Maricite NaFePO4 nanodots with minimized sizes (≈1.6 nm) uniformly embedded in porous N‐doped carbon nanofibers (designated as NaFePO4@C) are first prepared by electrospinning for maximized Na‐storage performance. The obtained flexible NaFePO4@C fiber membrane adherent on aluminum foil is directly used as binder‐free cathode for sodium‐ion batteries, revealing that the ultrasmall nanosize effect as well as a high‐potential desodiation process can transform the generally perceived electrochemically inactive maricite NaFePO4 into a highly active amorphous phase; meanwhile, remarkable electrochemical performance in terms of high reversible capacity (145 mA h g?1 at 0.2 C), high rate capability (61 mA h g?1 at 50 C), and unprecedentedly high cyclic stability (≈89% capacity retention over 6300 cycles) is achieved. Furthermore, the soft package Na‐ion full battery constructed by the NaFePO4@C nanofibers cathode and the pure carbon nanofibers anode displays a promising energy density of 168.1 Wh kg?1 and a notable capacity retention of 87% after 200 cycles. The distinctive 3D network structure of very fine NaFePO4 nanoparticles homogeneously encapsulated in interconnected porous N‐doped carbon nanofibers, can effectively improve the active materials' utilization rate, facilitate the electrons/Na+ ions transport, and strengthen the electrode stability upon prolonged cycling, leading to the fascinating Na‐storage performance.  相似文献   

20.
The demand for advanced energy storage devices such as supercapacitors and lithium‐ion batteries has been increasing to meet the application requirements of hybrid vehicles and renewable energy systems. A major limitation of state‐of‐art supercapacitors lies in their relatively low energy density compared with lithium batteries although they have superior power density and cycle life. Here, we report an additive‐free, nano‐architectured nickel hydroxide/carbon nanotube (Ni(OH)2/CNT) electrode for high energy density supercapacitors prepared by a facile two‐step fabrication method. This Ni(OH)2/CNT electrode consists of a thick layer of conformable Ni(OH)2 nano‐flakes on CNT bundles directly grown on Ni foams (NFs) with a very high areal mass loading of 4.85 mg cm?2 for Ni(OH)2. Our Ni(OH)2/CNT/NF electrode demonstrates the highest specific capacitance of 3300 F g?1 and highest areal capacitance of 16 F cm?2, to the best of our knowledge. An asymmetric supercapacitor using the Ni(OH)2/CNT/NF electrode as the anode assembled with an activated carbon (AC) cathode can achieve a high cell voltage of 1.8 V and an energy density up to 50.6 Wh/kg, over 10 times higher than that of traditional electrochemical double‐layer capacitors (EDLCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号