首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As an interesting layered material, molybdenum disulfide (MoS2) has been extensively studied in recent years due to its exciting properties. However, the applications of MoS2 in optoelectronic devices are impeded by the lack of high‐quality p–n junction, low light absorption for mono‐/multilayers, and the difficulty for large‐scale monolayer growth. Here, it is demonstrated that MoS2 films with vertically standing layered structure can be deposited on silicon substrate with a scalable sputtering method, forming the heterojunction‐type photodetectors. Molecular layers of the MoS2 films are perpendicular to the substrate, offering high‐speed paths for the separation and transportation of photo‐generated carriers. Owing to the strong light absorption of the relatively thick MoS2 film and the unique vertically standing layered structure, MoS2/Si heterojunction photodetectors with unprecedented performance are actualized. The self‐driven MoS2/Si heterojunction photodetector is sensitive to a broadband wavelength from visible light to near‐infrared light, showing an extremely high detectivity up to ≈1013 Jones (Jones = cm Hz1/2 W?1), and an ultrafast response speed of ≈3 μs. The performance is significantly better than the photodetectors based on mono‐/multilayer MoS2 nanosheets. Additionally, the MoS2/Si photodetectors exhibit excellent stability in air for a month. This work unveils the great potential of MoS2/Si heterojunction for optoelectronic applications.  相似文献   

2.
Two types of transition metal dichalcogenide (TMD) transistors are applied to demonstrate their possibility as switching/driving elements for the pixel of organic light‐emitting diode (OLED) display. Such TMD materials are 6 nm thin WSe2 and MoS2 as a p‐type and n‐type channel, respectively, and the pixel is thus composed of external green OLED and nanoscale thin channel field effect transistors (FETs) for switching and driving. The maximum mobility of WSe2‐FETs either as switch or as driver is ≈30 cm2 V?1 s?1, in linear regime of the gate voltage sweep range. Digital (ON/OFF‐switching) and gray‐scale analogue operations of OLED pixel are nicely demonstrated. MoS2 nanosheet FET‐based pixel is also demonstrated, although limited to alternating gray scale operation of OLED. Device stability issue is still remaining for future study but TMD channel FETs are very promising and novel for their applications to OLED pixel because of their high mobility and I D ON/OFF ratio.  相似文献   

3.
Solar‐blind deep ultraviolet (DUV) photodetectors have been a hot topic in recent years because of their wide commercial and military applications. A wide bandgap (4.68 eV) of ternary oxide Zn2GeO4 makes it an ideal material for the solar‐blind DUV detection. Unfortunately, the sensing performance of previously reported photodetectors based on Zn2GeO4 nanowires has been unsatisfactory for practical applications, because they suffer from long response and decay times, low responsivity, and quantum efficiency. Here, high‐performance solar‐blind DUV photodetectors are developed based on individual single‐crystalline Zn2GeO4 nanowires. The transport mechanism is discussed in the frame of the small polaron theory. In situ electrical characterization of individual Zn2GeO4 nanowires reveals a high gain under high energy electron beam. The devices demonstrate outstanding solar‐blind light sensing performances: a responsivity of 5.11 × 103 A W?1, external quantum efficiency of 2.45 × 106%, detectivity of ≈2.91 × 1011 Jones, τrise ≈ 10 ms, and τdecay ≈ 13 ms, which are superior to all reported Zn2GeO4 and other ternary oxide nanowire photodetectors. These results render the Zn2GeO4 nanowires particularly valuable for optoelectronic devices.  相似文献   

4.
Zn3As2 is an important p‐type semiconductor with the merit of high effective mobility. The synthesis of single‐crystalline Zn3As2 nanowires (NWs) via a simple chemical vapor deposition method is reported. High‐performance single Zn3As2 NW field‐effect transistors (FETs) on rigid SiO2/Si substrates and visible‐light photodetectors on rigid and flexible substrates are fabricated and studied. As‐fabricated single‐NW FETs exhibit typical p‐type transistor characteristics with the features of high mobility (305.5 cm2 V?1 s?1) and a high Ion/Ioff ratio (105). Single‐NW photodetectors on SiO2/Si substrate show good sensitivity to visible light. Using the contact printing process, large‐scale ordered Zn3As2 NW arrays are successfully assembled on SiO2/Si substrate to prepare NW thin‐film transistors and photodetectors. The NW‐array photodetectors on rigid SiO2/Si substrate and flexible PET substrate exhibit enhanced optoelectronic performance compared with the single‐NW devices. The results reveal that the p‐type Zn3As2 NWs have important applications in future electronic and optoelectronic devices.  相似文献   

5.
The transitionmetal dichalcogenides‐based phototransistors have demonstrated high transport mobility but are limited to poor photoresponse, which greatly blocks their applications in optoelectronic fields. Here, light sensitive PbS colloidal quantum dots (QDs) combined with 2D WSe2 to develop hybrid QDs/2D‐WSe2 phototransistors for high performance and broadband photodetection are utilized. The device shows a responsivity up to 2 × 105 A W–1, which is orders of magnitude higher than the counterpart of individual material‐based devices. The detection spectra of hybrid devices can be extended to near infrared similar to QDs' response. The high performance of hybrid 0D‐2D phototransistor is ascribed to the synergistic function of photogating effect. PbS QDs can efficiently absorb the input illumination and 2D WSe2 supports a transport expressway for injected photocarriers. The hybrid phototransistors obtain a specific detectivity over 1013 Jones in both ON and OFF state in contrast to the depleted working state (OFF) for other reported QDs/2D phototransistors. The present device construction strategy, photogating enhanced performance, and robust device working conditions contain high potential for future optoelectronic devices.  相似文献   

6.
In recent years, 2D layered materials have been considered as promising photon absorption channel media for next‐generation phototransistors due to their atomic thickness, easily tailored single‐crystal van der Waals heterostructures, ultrafast optoelectronic characteristics, and broadband photon absorption. However, the photosensitivity obtained from such devices, even under a large bias voltage, is still unsatisfactory until now. In this paper, high‐sensitivity phototransistors based on WS2 and MoS2 are proposed, designed, and fabricated with gold nanoparticles (AuNPs) embedded in the gate dielectric. These AuNPs, located between the tunneling and blocking dielectric, are found to enable efficient electron trapping in order to strongly suppress dark current. Ultralow dark current (10?11 A), high photoresponsivity (1090 A W?1), and high detectivity (3.5 × 1011 Jones) are obtained for the WS2 devices under a low source/drain and a zero gate voltage at a wavelength of 520 nm. These results demonstrate that the floating‐gate memory structure is an effective configuration to achieve high‐performance 2D electronic/optoelectronic devices.  相似文献   

7.
Atomically layered 2D crystals such as transitional metal dichalcogenides (TMDs) provide an enchanting landscape for optoelectronic applications due to their unique atomic structures. They have been most intensively studied with 2H phase for easy fabrication and manipulation. 1T phase material could possess better electrocatalytic and photocatalytic properties, while they are difficult to fabricate. Herein, for the first time, the atomically layered 1T phase tin diselenides (SnSe2, III‐IV compound) are successfully exfoliated by the method of mechanical exfoliation from bulk single crystals, grown via the chemical vapor transport method without transport gas. More attractively, the high performance atomically layered SnSe2 photodetector has been first successfully fabricated, which displays a good responsivity of 0.5 A W?1 and a fast photoresponse down to ≈2 ms at room temperature, one of the fastest response times among all types of 2D photodetectors. It makes SnSe2 a promising candidate for high performance optoelectronic devices. Moreover, high performance bilayered SnSe2 field‐effect transistors are also demonstrated with a mobility of ≈4 cm2 V?1 s?1 and an on/off ratio of 103 at room temperature. The results demonstrate that few layered 1T TMD materials are relatively stable in air and can be exploited for various electrical and optical applications.  相似文献   

8.
Semiconducting molybdenum ditelluride (2H‐MoTe2), a fast‐emerging 2D material with an appropriate band gap and decent carrier mobility, is configured as field‐effect transistors and is the focus of substantial research interest, showing hole‐dominated ambipolar characteristics. Here, carrier modulation of ambipolar few‐layer MoTe2 transistors is demonstrated utilizing magnesium oxide (MgO) surface charge transfer doping. By carefully adjusting the thickness of MgO film and the number of MoTe2 layers, the carrier polarity of MoTe2 transistors from p‐type to n‐type can be reversely controlled. The electron mobility of MoTe2 is significantly enhanced from 0.1 to 20 cm2 V?1 s?1 after 37 nm MgO film doping, indicating a greatly improved electron transport. The effective carrier modulation enables to achieve high‐performance complementary inverters with high DC gain of >25 and photodetectors based on few‐layer MoTe2 flakes. The results present an important advance toward the realization of electronic and optoelectronic devices based on 2D transition‐metal dichalcogenide semiconductors.  相似文献   

9.
Photogating detectors based on 2D materials attract significant research interests. However, most of these photodetectors are only sensitive to the incident intensities and lack the ability to distinguish different wavelengths. Color imaging based on these detectors usually requires additional optical filter arrays to collect red, green, and blue (RGB) colors in different photodetectors to restore the true color of one pixel. In this study, an MoS2/HfO2/silicon‐on‐insulator field effect phototransistor with wavelength distinguishing ability is presented, where the photogating effect can be simultaneously formed in the top MoS2 gate and bottom Si substrate gate. These two individual photogating effects can reduce and increase the read current in the middle 12 nm Si channel, respectively. Thus, by tuning the applied voltages on these two gates, the device can be used to obtain tunable ambipolar photoresponsivity from +7000 A W?1 (Si bottom gate dominated) to 0 A W?1 (balanced), and finally to ?8000 A W?1 (MoS2 gate dominated). In addition, the experimental results show that the corresponding top gate voltage to the zero responsivity (0 A W?1) point can be positively shifted by the increasing of incident wavelength with high resolution up to 2 nm and is insensitive to the incident intensity.  相似文献   

10.
Simultaneously integrating efficient optical gain and high charge carrier mobility in organic semiconductors for multifunctional optoelectronic applications is challenging. Here, a new thiophene/phenylene derivative, 5,5′‐bis(2,2‐diphenylvinyl)‐bithiophene (BDPV2T), containing an appropriate butterfly molecular configuration in a π‐conjugated structure, is designed to achieve both solid‐state emission and charge transport properties. The prepared BDPV2T crystals exhibit excellent light‐emitting characteristics with a photoluminescence quantum yield of 30%, low light‐amplification threshold of 8 kW cm?2, high optical net gain up to 70 cm?1, and high charge carrier mobility up to 1 cm2 V?1 s?1 in their J‐aggregate single crystals. These BDPV2T single crystal characteristics ensure their application potential for photodetectors, field‐effect transistors, and light‐emitting transistors. High optoelectronic performances are achieved with photoresponsivity of 2.0 × 103 A W?1 and light on/off ratio of 5.4 × 105 in photodetectors, and efficient ambipolar charge transport (µh: 0.14 cm2 V?1 s?1, µe: 0.02 cm2 V?1 s?1) and electroluminescence characteristics in light‐emitting transistors. The remarkably integrated optoelectronic properties of BDPV2T suggest it is a promising candidate for organic multifunctional and electrically pumped laser applications.  相似文献   

11.
Precise modulation of electrical and optical properties of 2D transition metal dichalcogenides (TMDs) is required for their application to high‐performance devices. Although conventional plasma‐based doping methods have provided excellent controllability and reproducibility for bulk or relatively thick TMDs, the application of plasma doping for ultrathin few‐layer TMDs has been hindered by serious degradation of their properties. Herein, a reliable and universal doping route is reported for few‐layer TMDs by employing surface‐shielding nanostructures during a plasma‐doping process. It is shown that the surface‐protection oxidized polydimethylsiloxane nanostructures obtained from the sub‐20 nm self‐assembly of Si‐containing block copolymers can preserve the integrity of 2D TMDs and maintain high mobility while affording extensive control over the doping level. For example, the self‐assembled nanostructures form periodically arranged plasma‐blocking and plasma‐accepting nanoscale regions for realizing modulated plasma doping on few‐layer MoS2, controlling the n‐doping level of few‐layer MoS2 from 1.9 × 1011 cm?2 to 8.1 × 1011 cm?2 via the local generation of extra sulfur vacancies without compromising the carrier mobility.  相似文献   

12.
Molecular doping of organic semiconductors and devices represents an enabling technology for a range of emerging optoelectronic applications. Although p‐type doping has been demonstrated in a number of organic semiconductors, efficient n‐type doping has proven to be particularly challenging. Here, n‐type doping of solution‐processed C60, C70, [60]PCBM, [70]PCBM and indene‐C60 bis‐adduct by 1H‐benzimidazole (N‐DMBI) is reported. The doping efficiency for each system is assessed using field‐effect measurements performed under inert atmosphere at room temperature in combination with optical absorption spectroscopy and atomic force microscopy. The highest doping efficiency is observed for C60 and C70 and electron mobilities up to ≈2 cm2/Vs are obtained. Unlike in substituted fullerenes‐based transistors where the electron mobility is found to be inversely proportional to N‐DMBI concentration, C60 and C70 devices exhibit a characteristic mobility increase by approximately an order of magnitude with increasing dopant concentration up to 1 mol%. Doping also appears to significantly affect the bias stability of the transistors. The work contributes towards understanding of the molecular doping mechanism in fullerene‐based semiconductors and outlines a simple and highly efficient approach that enables significant improvement in device performance through facile chemical doping.  相似文献   

13.
The very recently rediscovered group‐10 transition metal dichalcogenides (TMDs) such as PtS2 and PtSe2, have joined the 2D material family as potentially promising candidates for electronic and optoeletronic applications due to their theoretically high carrier mobility, widely tunable bandgap, and ultrastability. Here, the first exploration of optoelectronic application based on few‐layered PtS2 using h‐BN as substrate is presented. The phototransistor exhibits high responsivity up to 1.56 × 103 A W?1 and detectivity of 2.9 × 1011 Jones. Additionally, an ultrahigh photogain ≈2 × 106 is obtained at a gate voltage V g = 30 V, one of the highest gain among 2D photodetectors, which is attributed to the existence of trap states. More interestingly, the few‐layered PtS2 phototransistor shows a back gate modulated photocurrent generation mechanism, that is, from the photoconductive effect dominant to photogating effect dominant via tuning the gate voltage from the OFF state to the ON state. Such good properties combined with gate‐controlled photoresponse of PtS2 make it a competitive candidate for future 2D optoelectronic applications.  相似文献   

14.
Since transition metal dichalcogenide (TMD) semiconductors are found as 2D van der Waals materials with a discrete energy bandgap, many 2D‐like thin field effect transistors (FETs) and PN diodes are reported as prototype electrical and optoelectronic devices. As a potential application of display electronics, transparent 2D FET devices are also reported recently. Such transparent 2D FETs are very few in report, yet no p‐type channel 2D‐like FETs are seen. Here, 2D‐like thin transparent p‐channel MoTe2 FETs with oxygen (O2) plasma‐induced MoOx/Pt/indium‐tin‐oxide (ITO) contact are reported for the first time. For source/drain contact, 60 s short O2 plasma and ultrathin Pt‐deposition processes on MoTe2 surface are sequentially introduced before ITO thin film deposition and patterning. As a result, almost transparent 2D FETs are obtained with a decent mobility of ≈5 cm2 V?1 s?1, a high ON/OFF current ratio of ≈105, and 70% transmittance. In particular, for normal MoTe2 FETs without ITO, O2 plasma process greatly improves the hole injection efficiency and device mobility (≈60 cm2 V?1 s?1), introducing ultrathin MoOx between Pt source/drain and MoTe2. As a final device application, a photovoltaic current modulator, where the transparent FET stably operates as gated by photovoltaic effects, is integrated.  相似文献   

15.
2D layered materials are an emerging class of low‐dimensional materials with unique physical and structural properties and extensive applications from novel nanoelectronics to multifunctional optoelectronics. However, the widely investigated 2D materials are strongly limited in high‐performance electronics and ultrabroadband photodetectors by their intrinsic weaknesses. Exploring the new and narrow bandgap 2D materials is very imminent and fundamental. A narrow‐bandgap noble metal dichalcogenide (PtS2) is demonstrated in this study. The few‐layer PtS2 field‐effect transistor exhibits excellent electronic mobility exceeding 62.5 cm2 V?1 s?1 and ultrahigh on/off ratio over 106 at room temperature. The temperature‐dependent conductance and mobility of few‐layer PtS2 transistors show a direct metal‐to‐insulator transition and carrier scattering mechanisms, respectively. Remarkably, 2D PtS2 photodetectors with broadband photodetection from visible to mid‐infrared and a fast photoresponse time of 175 µs at 830 nm illumination for the first time are obtained at room temperature. Our work opens an avenue for 2D noble‐metal dichalcogenides to be applied in high‐performance electronic and mid‐infrared optoelectronic devices.  相似文献   

16.
Defect engineering of 2D transition metal dichalcogenides (TMDCs) is essential to modulate their optoelectrical functionalities, but there are only a few reports on defect‐engineered TMDC device arrays. Herein, the atomic vacancy control and elemental substitution in a chemical vapor deposition (CVD)‐grown molybdenum disulfide (MoS2) monolayer via mild photon irradiation under controlled atmospheres are reported. Raman spectroscopy, photoluminescence, X‐ray, and ultraviolet photoelectron spectroscopy comprehensively demonstrate that the well‐controlled photoactivation delicately modulates the sulfur‐to‐molybdenum ratio as well as the work function of a MoS2 monolayer. Furthermore, the atomic‐resolution scanning transmission electron microscopy directly confirms that small portions (2–4 at% corresponding to the defect density of 4.6 × 1012 to 9.2 × 1013 cm?2) of sulfur vacancies and oxygen substituents are generated in the MoS2 while the overall atomic‐scale structural integrity is well preserved. Electronic and optoelectronic device arrays are also realized using the defect‐engineered CVD‐grown MoS2, and it is further confirmed that the well‐defined sulfur vacancies and oxygen substituents effectively give rise to the selective n‐ and p‐doping in the MoS2, respectively, without the trade‐off in device performance. In particular, low‐percentage oxygen‐doped MoS2 devices show outstanding optoelectrical performance, achieving a detectivity of ≈1013 Jones and rise/decay times of 0.62 and 2.94 s, respectively.  相似文献   

17.
2D materials have been extensively investigated in view of their excellent electrical/optical properties, with particular attention directed at the fabrication of vertical or lateral heterostructures. Although such heterostructures exhibit unexpected or enhanced properties compared to those of singly used 2D materials, their fabrication is challenged by the difficulty of realizing spatial control and large area integration. Herein, MoS2 is grown on patterned graphene at variable temperatures, combining the concept of lateral heterostructure with chemical vapor deposition to realize large area growth with precise spatial control, and probe the spatial distribution of graphene and MoS2 by a number of instrumental techniques. The prepared MoS2‐graphene lateral heterostructure is employed to construct field effect transistors with graphene as the source/drain and MoS2 as the channel, and the performance of these transistors (on/off ratio ≈109, maximum field effect mobility = 8.5 cm2 V?1 s?1) is shown to exceed that of their MoS2‐only counterparts.  相似文献   

18.
The emergence of semiconducting transition metal dichalcogenide (TMD) atomic layers has opened up unprecedented opportunities in atomically thin electronics. Yet the scalable growth of TMD layers with large grain sizes and uniformity has remained very challenging. Here is reported a simple, scalable chemical vapor deposition approach for the growth of MoSe2 layers is reported, in which the nucleation density can be reduced from 105 to 25 nuclei cm?2, leading to millimeter‐scale MoSe2 single crystals as well as continuous macrocrystalline films with millimeter size grains. The selective growth of monolayers and multilayered MoSe2 films with well‐defined stacking orientation can also be controlled via tuning the growth temperature. In addition, periodic defects, such as nanoscale triangular holes, can be engineered into these layers by controlling the growth conditions. The low density of grain boundaries in the films results in high average mobilities, around ≈42 cm2 V?1 s?1, for back‐gated MoSe2 transistors. This generic synthesis approach is also demonstrated for other TMD layers such as millimeter‐scale WSe2 single crystals.  相似文献   

19.
The tuning of charge carrier concentrations in semiconductor is necessary in order to approach high performance of the electronic and optoelectronic devices. It is demonstrated that the charge‐carrier density of single‐layer (SL), bilayer (BL), and few‐layer (FL) MoS2 nanosheets can be finely and reversibly tuned with N2 and O2 gas in the presence of deep‐ultraviolet (DUV) light. After exposure to N2 gas in the presence of DUV light, the threshold voltages of SL, BL, and FL MoS2 field‐effect transistors (FETs) shift towards negative gate voltages. The exposure to N2 gas in the presence of DUV light notably improves the drain‐to‐source current, carrier density, and charge‐carrier mobility for SL, BL, and FL MoS2 FETs. Subsequently, the same devices are exposed to O2 gas in the presence of DUV light for different periods and the electrical characteristics are completely recovered after a certain time. The doping by using the combination of N2 and O2 gas with DUV light provides a stable, effective, and facile approach for improving the performance of MoS2 electronic devices.  相似文献   

20.
2D materials are promising to overcome the scaling limit of Si field‐effect transistors (FETs). However, the insulator/2D channel interface severely degrades the performance of 2D FETs, and the origin of the degradation remains largely unexplored. Here, the full energy spectra of the interface state densities (Dit) are presented for both n‐ and p‐ MoS2 FETs, based on the comprehensive and systematic studies, i.e., full rage of channel thickness and various gate stack structures with h‐BN as well as high‐k oxides. For n‐MoS2, Dit around the mid‐gap is drastically reduced to 5 × 1011 cm?2 eV?1 for the heterostructure FET with h‐BN from 5 × 1012 cm?2 eV?1 for the high‐k top‐gate. On the other hand, Dit remains high, ≈ 1013 cm?2 eV?1, even for the heterostructure FET for p‐MoS2. The systematic study elucidates that the strain induced externally through the substrate surface roughness and high‐k deposition process is the origin for the interface degradation on conduction band side, while sulfur‐vacancy‐induced defect states dominate the interface degradation on valance band side. The present understanding of the interface properties provides the key to further improving the performance of 2D FETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号