首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The successful development of highly sensitive, water‐compatible, nontoxic nanoprobes has allowed nanomaterials to be widely employed in various applications. The applicability of highly bright quantum dot (QD)‐based probes consisting of QDs on 120 nm silica nanoparticles (NPs) with silica shells is investigated. Their substantial merits, such as their brightness and biocompatibility, for effective bioimaging are demonstrated. Silica‐coated, QD‐embedded silica NPs (Si@QDs@Si NPs) containing QDs composed of CdSe@ZnS (core‐shell) are prepared to compare their structure‐based advantages over single QDs that have a similar quantum yield (QY). These Si@QDs@Si NPs exhibit approximately 200‐times stronger photoluminescence (PL) than single QDs. Cytotoxicity studies reveal that the Si@QDs@Si NPs are less toxic than equivalent numbers of silica‐free single quantum dots. The excellence of the Si@QDs@Si NPs with regard to in vivo applications is illustrated by significantly enhanced fluorescence signals from Si@QDs@Si‐NP‐tagged cells implanted in mice. Notably, a more advanced version of QD‐based silica NPs (Si@mQDs@Si NPs), containing multishell quantum dots (mQDs) composed of CdSe@CdS@ZnS, are prepared without significant loss of QY during surface modification. In addition, the Si@mQDs@Si NPs display a fivefold higher fluorescence activity than the Si@QDs@Si NPs. As few as 400 units of Si@mQDs@Si‐ NP‐internalized cells can be detected in the cell‐implanted mouse model.  相似文献   

2.
Carbon‐based nanomaterials have been considered promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle‐incorporated cell culture substrates, but only a limited number of studies have been reported on the development of 3D tissue constructs using these nanomaterials. Here, a novel approach to engineer 3D multilayer constructs using layer‐by‐layer (LbL) assembly of cells separated with self‐assembled graphene oxide (GO)‐based thin films is presented. The GO‐based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multilayer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multilayer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co‐culture of cardiomyocytes and other cell types. In this work, the fabrication of stand‐alone multilayer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties is demonstrated. Therefore, this LbL‐based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity.  相似文献   

3.
Biological interfacing of graphene has become crucial to improve its biocompatibility, dispersability, and selectivity. However, biofunctionalization of graphene without yielding defects in its sp2‐carbon lattice is a major challenge. Here, a process is set out for biofunctionalized defect‐free graphene synthesis through the liquid phase ultrasonic exfoliation of raw graphitic material assisted by the self‐assembling fungal hydrophobin Vmh2. This protein (extracted from the edible fungus Pleurotus ostreatus) is endowed with peculiar physicochemical properties, exceptional stability, and versatility. The unique properties of Vmh2 and, above all, its superior hydrophobicity, and stability allow to obtain a highly concentrated (≈440–510 μg mL?1) and stable exfoliated material (ζ‐potential, +40/+70 mV). In addition controlled centrifugation enables the selection of biofunctionalized few‐layer defect‐free micrographene flakes, as assessed by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, and electrophoretic mobility. This biofunctionalized product represents a high value added material for the emerging applications of graphene in the biotechnological field such as sensing, nanomedicine, and bioelectronics technologies.  相似文献   

4.
TiO2 nanorods are self‐assembled on the graphene oxide (GO) sheets at the water/toluene interface. The self‐assembled GO–TiO2 nanorod composites (GO–TiO2 NRCs) can be dispersed in water. The effective anchoring of TiO2 nanorods on the whole GO sheets is confirmed by transmission electron microscopy (TEM), X‐ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), and thermogravimetric analysis (TGA). The significant increase of photocatalytic activity is confirmed by the degradation of methylene blue (MB) under UV light irridiation. The large enhancement of photocatalytic activity is caused by the effective charge anti‐recombination and the effective absorption of MB on GO. The effective charge transfer from TiO2 to GO sheets is confirmed by the significant photoluminescence quenching of TiO2 nanorods, which can effectively prevent the charge recombination during photocatalytic process. The effective absorption of MB on GO is confirmed by the UV‐vis spectra. The degradation rate of MB in the second cycle is faster than that in the first cycle because of the reduction of GO under UV light irradiation.  相似文献   

5.
As the development in self‐assembly of nanoparticles, a main question is directed to whether the supercrystalline structure can facilitate generation of collective properties, such as coupling between adjacent nanocrystals or delocalization of exciton to achieve band‐like electronic transport in a 3D assembly. The nanocrystal surfaces are generally passivated by insulating organic ligands, which block electronic communication of neighboring building blocks in nanoparticle assemblies. Ligand removal or exchange is an operable strategy for promoting electron transfer, but usually changes the surface states, resulting in performance alteration or uncontrollable aggregation. Here, 3D, supercompact superparticles with well‐defined superlattice domains through a thermally controlled emulsion‐based self‐assembly method is fabricated. The interparticle spacing in the superparticles shrinks to ≈0.3 nm because organic ligands lie prone on the nanoparticle surface, which are sufficient to overcome the electron transfer barrier. The ordered and compressed superstructures promote coupling and electronic energy transfer between CdSSe quantum dots (QDs). Therefore, the acquired QD superparticles exhibit different optical properties and enhanced photoelectric activity compared to individual QDs.  相似文献   

6.
The sensing performance of chemical sensors can be achieved not only by modification or hybridization of sensing materials but also through new design in device geometry. The performance of a chemical sensing device can be enhenced from a simple three‐dimensional (3D) chemiresistor‐based gas sensor platform with an increased surface area by forming networked, self‐assembled reduced graphene oxide (R‐GO) nanosheets on 3D SU8 micro‐pillar arrays. The 3D R‐GO sensor is highly responsive to low concentration of ammonia (NH3) and nitrogen dioxide (NO2) diluted in dry air at room temperature. Compared to the two‐dimensional planar R‐GO sensor structure, as the result of the increase in sensing area and interaction cross‐section of R‐GO on the same device area, the 3D R‐GO gas sensors show improved sensing performance with faster response (about 2%/s exposure), higher sensitivity, and even a possibly lower limit of detection towards NH3 at room temperature.  相似文献   

7.
Fluorescence from quantum dots (QDs) sandwiched between colloidal gold nanoparticles and lithographically created metal nanoarrays is studied using engineered peptides as binding agents. For optimized structures, a 15‐fold increase is observed in the brightness of the QDs due to plasmon‐enhanced fluorescence. This enhanced brightness is achieved by systematically tuning the vertical distance of the QD from the gold nanoparticles using solid‐specific peptide linkers and by optimizing the localized surface plasmon resonance by varying the geometric arrangement of the patterned gold nanoarray. The size and pitch of the patterned array affect the observed enhancement, and sandwiching the QDs between the patterned features and colloidal gold nanoparticles yields even larger enhancements due to the increase in local electromagnetic hot spots induced by the increased surface roughness. The use of bifunctional biomolecular linkers to control the formation of hot spots in sandwich structures provides new ways to fabricate hybrid nanomaterials of architecturally induced functionality for biotechnology and photonics.  相似文献   

8.
Achieving the nondestructive assembly of carbon nanoelectrodes with multiple components in a scalable manner enables effective electrical interfaces among nanomaterials. Here, a facile nondestructive multiscale assembly of multicomponent nanomaterials using self‐assembled tyrosine‐rich peptide nanofibers (TPFs) as a biological glue is reported. The versatile functionalities of the rationally devised tyrosine‐rich short peptide allow for (1) self‐assembly of the peptide into nanofibers using noncovalent interactions, followed by (2) immobilization of spatially distributed metal nanoparticles on the nanofiber surface, and (3) subsequent assembly with graphitic nanomaterials into a percolated network‐structure. This percolated network‐structure of silver nanoparticle (AgNP)‐decorated peptide nanofibers with imbedded single‐walled carbon nanotubes (SWNTs) proves to be a versatile nanoelectrode platform with excellent processability. The SWNT–TPF–AgNP assembly, when utilized as a flexible and transparent multicomponent electronic film, was quite effective for enhancing direct electron transfer (DET) as verified for a third‐generation glucose sensor composed of this film. The simple solution process used to produce the functional nanomaterials could provide a new platform for scalable manufacturing of novel nanoelectrode materials forming effective electrical contacts with molecules from diverse biological systems.  相似文献   

9.
A variety of nanomaterials have shown extraordinarily high quenching ability toward a broad range of fluorophores. Recently, there has been intense interest in developing new tools for fluorescent DNA analysis in solution or inside the cell based on this property, and by exploiting interactions between these nanoscale “superquenchers” and DNA molecules in the single‐stranded (ss‐) or double‐stranded (ds‐) forms. Here, a comparative study on the nanoqueching effects is performed by using a series of nanomaterials with different dimensions, i.e., gold nanoparticles (AuNPs, 0D), carbon nanotubes (CNTs, 1D), and graphene oxide (GO, 2D). The quenching efficiency, kinetics, differentiation ability, and influencing factors such as concentration and ionic strength are studied. Interestingly, GO exhibits superior quenching abilities to the other two materials in both the quenching efficiency and kinetics. As a result, a GO‐based fluorescent sensor, designed in a simple mix‐and‐detect format, can detect concentrations of DNA as low as 0.2 nM , which is better than either CNTs or AuNPs by an order of magnitude. This sensor can also differentiate single‐base mismatches much better than either CNTs‐ or AuNPs‐ based sensors. This study paves the way to better choice of nanomaterials for bioanalysis and elaborate design of biosensors for both in vitro diagnosis and in vivo bioimaging.  相似文献   

10.
Treatments for autoimmunity—diseases where the immune system mistakenly attacks self‐molecules—are not curative and leave patients immunocompromised. New studies aimed at more specific treatments reveal that development of inflammation or tolerance is influenced by the form in which self‐antigens are presented. Using a mouse model of multiple sclerosis (MS), it is shown for the first time that quantum dots (QDs) can be used to generate immunological tolerance by controlling the density of self‐antigen on QDs. These assemblies display dense arrangements of myelin self‐peptide associated with disease in MS, are uniform in size (<20 nm), and allow direct visualization in immune tissues. Peptide‐QDs rapidly concentrate in draining lymph nodes, colocalizing with macrophages expressing scavenger receptors involved in tolerance. Treatment with peptide‐QDs reduces disease incidence tenfold. Strikingly, the degree of tolerance—and the underlying expansion of regulatory T cells—correlates with the density of myelin molecules presented on QDs. A key discovery is that higher numbers of tolerogenic particles displaying lower levels of self‐peptide are more effective for inducing tolerance than fewer particles each displaying higher densities of peptide. QDs conjugated with self‐antigens can serve as a new platform to induce tolerance, while visualizing QD therapeutics in tolerogenic tissue domains.  相似文献   

11.
Magnetic/fluorescent barcodes, which combine quantum dots (QDs) and superparamagnetic nanoparticles in micrometer‐sized host microspheres, are promising for automatic high‐throughput multiplexed biodetection applications and “point of care” biodetection. However, the fluorescence intensity of QDs sharply decreases after addition of magnetic nanoparticles (MNPs) due to absorption by MNPs, and thus, the encoding capacity of QDs becomes more limited. Furthermore, the intrinsic toxicity of cadmium‐based QDs, the most commonly used QD in barcodes, has significant risks to human health and the environment. In this work, to alleviate fluorescence quenching and intrinsic toxicity, cadmium‐free NIR‐emitting CuInS2/ZnS QDs and Fe3O4 MNPs are successfully incorporated into poly(styrene‐co‐maleic anhydride) microspheres by using the Shirasu porous glass membrane emulsification technique. A “single‐wavelength” encoding model is successfully constructed to guide the encoding of NIR QDs with wide emission spectra. Then, a “single‐wavelength” encoding combined with size encoding is used to produce different optical codes by simply changing the wavelength and the intensity of the QDs as well as the size of the barcode microspheres. 48 barcodes are easily created due to the greatly reduced energy transfer between the NIR‐emitting QDs and MNPs. The resulting bifunctional barcodes are also combined with a flow cytometer using one laser for multiplexed detection of five tumor markers in one test. Assays based on these barcodes are significantly more sensitive than non‐magnetic and traditional ELISA assays. Moreover, validating experiments also show good performance of the bifunctional barcodes‐based suspension array when dealing with patient serum samples. Thus, magnetic/fluorescent barcodes based on NIR‐emitting CuInS2/ZnS QDs are promising for multiplexed bioassay applications.  相似文献   

12.
Fluorescence from quantum dots (QDs) sandwiched between colloidal gold nanoparticles and lithographically created metal nanoarrays is studied using engineered peptides as binding agents. For optimized structures, a 15‐fold increase is observed in the brightness of the QDs due to plasmon‐enhanced fluorescence. This enhanced brightness is achieved by systematically tuning the vertical distance of the QD from the gold nanoparticles using solid‐specific peptide linkers and by optimizing the localized surface plasmon resonance by varying the geometric arrangement of the patterned gold nanoarray. The size and pitch of the patterned array affect the observed enhancement, and sandwiching the QDs between the patterned features and colloidal gold nanoparticles yields even larger enhancements due to the increase in local electromagnetic hot spots induced by the increased surface roughness. The use of bifunctional biomolecular linkers to control the formation of hot spots in sandwich structures provides new ways to fabricate hybrid nanomaterials of architecturally induced functionality for biotechnology and photonics.  相似文献   

13.
Ultrathin, freestanding polymer hybrid film with macroscopic sizes and molecular thicknesses have received significant interest due to their applications as functional devices, microsensors or nanoactuators. Herein, a 2D Janus hybrid of polymer‐grafted carbon nanotubes/graphene oxide (CNTs/GO) thin film is fabricated using microcontact printed CNTs/GO as photo active surface to grow polymer brushes by self‐initiated photografting and photopolymerization selectively from one side of CNTs/GO film. This achieved 2D Janus hybrid materials with grafted polymer layer as insulative carpet and supported CNTs/GO thin film as conductive element have the potential application as flexible and miniature electric carpet for heating micro‐/nano devices locally.  相似文献   

14.
Nowadays, one of the most exciting applications of nanotechnology in biomedicine is the development of localized, noninvasive therapies for diverse diseases, such as cancer. Among them, nanoparticle‐based photothermal therapy (PTT), which destroys malignant cells by delivering heat upon optical excitation of nanoprobes injected into a living specimen, is emerging with great potential. Two main milestones that must be reached for PTT to become a viable clinical treatment are deep penetration of the triggering optical excitation and real‐time accurate temperature monitoring of the ongoing therapy, which constitutes a critical factor to minimize collateral damage. In this work, a yet unexplored capability of near‐infrared emitting semiconductor nanocrystals (quantum dots, QDs) is demonstrated. Temperature self‐monitored ­QD‐based PTT is presented for the first time using PbS/CdS/ZnS QDs emitting in the second biological window. These QDs are capable of acting, simultaneously, as photothermal agents (heaters) and high‐resolution fluorescent thermal sensors, making it possible to achieve full control over the intratumoral temperature increment during PTT. The differences observed between intratumoral and surface temperatures in this comprehensive investigation, through different irradiation conditions, highlight the need for real‐time control of the intratumoral temperature that allows for a dynamic adjustment of the treatment conditions in order to maximize the efficacy of the therapy.  相似文献   

15.
Graphite oxide (GO) has received extensive interest as a precursor for the bulk production of graphene‐based materials. Here, the highly energetic nature of GO, noted from the self‐propagating thermal deoxygenating reaction observed in solid state, is explored. Although the resulting graphene product is quite stable against combustion even in a natural gas flame, its thermal stability is significantly reduced when contaminated with potassium salt by‐products left from GO synthesis. In particular, the contaminated GO becomes highly flammable. A gentle touch with a hot soldering iron can trigger violent, catastrophic, total combustion of such GO films, which poses a serious fire hazard. This highlights the need for efficient sample purification methods. Typically, purification of GO is hindered by its tendency to gelate as the pH value increases during rinsing. A two‐step, acid–acetone washing procedure is found to be effective for suppressing gelation and thus facilitating purification. Salt‐induced flammability is alarming for the fire safety of large‐scale manufacturing, processing, and storage of GO materials. However, the energy released from the deoxygenation of GO can also be harnessed to drive new reactions for creating graphene‐based hybrid materials. Through such domino‐like reactions, graphene sheets decorated with metal and metal oxide particles are synthesized using GO as the in situ power source. Enhanced electrochemical capacitance is observed for graphene sheets loaded with RuO2 nanoparticles.  相似文献   

16.
Colloidal quantum‐dot light‐emitting diodes (QDLEDs) with the HfO2/SiO2‐distributed Bragg reflector (DBR) structure are fabricated using a pulsed spray coating method. Pixelated RGB arrays, 2‐in. wafer‐scale white light emission, and an integrated small footprint white light device are demonstrated. The experimental results show that the intensity of red, green, and blue (RGB) emission exhibited considerable enhancement because of the high reflectivity in the UV region by the DBR structure, which subsequently increases the use in the UV optical pumping of RGB QDs. A pulsed spray coating method is crucial in providing uniform RGB layers, and the polydimethylsiloxane (PDMS) film is used as the interface layer between each RGB color to avoid cross‐contamination and self‐assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure remain constant under various pumping powers in the large area sample, whereas a larger shift toward high color temperatures is observed in the integrated device. The resulting color gamut of the proposed QDLEDs covers an area 1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high‐quality display technology.  相似文献   

17.
Development of efficient targeting nanomaterials is extremely challenging due to the nonspecific accumulation in immune tissues, such as the liver and the spleen. Ultrasmall nanoparticles (USNPs) could possess small molecule‐like in vivo pharmacokinetic profiles, coupled with integrated functions capacity, improving the molecular imaging efficiency, particularly in oncology. For nuclear imaging, radiometals are often incorporated into the structures of USNPs using chelator and chelator‐free strategies. However, the incorporated chelator may change the surface properties and in vivo behavior of UNSPs, while chelator‐free labeling strategies either involve complicated resynthesis or rely on the active properties of the metal ions. Herein, a novel chelator‐free and postsynthetic strategy for broad‐spectrum metal ion attachment is reported. The ultrasmall Ag2Se quantum dots (QDs) are developed with an active oxygen layer on the surface, allowing for facile incorporation of both active and inert metals with high labeling efficiency. The particles enable fluorescence, magnetic resonance imaging, and positron emission tomography (PET) trimodality imaging. After conjugation with targeting peptide, the probe yields a high tumor‐to‐muscle ratio of nine in PET imaging. Importantly, the QDs are predominantly excreted from body through the renal route within 12 h. This chelator‐free strategy opens an avenue for exploring broad‐spectrum radiometal isotope labeling and USNP‐based renal‐excreting imaging probes.  相似文献   

18.
Rational nanoscale surface engineering of electroactive nanoarchitecture is highly desirable, since it can both secure high surface‐controlled energy storage and sustain the structural integrity for long‐time and high‐rate cycling. Herein, ultrasmall MoS2 quantum dots (QDs) are exploited as surface sensitizers to boost the electrochemical properties of Li4Ti5O12 (LTO). The LTO/MoS2 composite is prepared by anchoring 2D LTO nanosheets with ultrasmall MoS2 QDs using a simple and effective assembly technique. Impressively, such 0D/2D heterostructure composites possess enhanced surface‐controlled Li/Na storage behavior. This unprecedented Li/Na storage process provides a LTO/MoS2 composite with outstanding Li/Na storage properties, such as high capacity and high‐rate capability as well as long‐term cycling stability. As anodes in Li‐ion batteries, the materials have a stable specific capacity of 170 mAhg?1 after 20 cycles and are able to retain 94.1% of this capacity after 1000 cycles, i.e., 160 mAhg?1, at a high rate of 10 C. Due to these impressice performance, the presented 0D/2D heterostructure has great potential in high‐performance LIBs and sodium‐ion batteries.  相似文献   

19.
The pulsed laser deposition (PLD) technique is used for the direct fabrication of nanohybrid heterojunctions (NH‐HJs) solar cells exhibiting high PCE and excellent stability in air without any encapsulation and/or resorting to any surface treatment, ligand engineering and/or post‐synthesis processing. The NH‐HJs are achieved through the PLD‐based decoration of hydrothermally‐grown one‐dimensional TiO2 nanorods (TiO2‐NRs) by PbS quantum dots (PbS‐QDs). By optimizing both the amount of PbS‐QDs (via the number of laser ablation pulses) and the length of the TiO2‐NRs, it is possible to achieve optimal NH‐HJs based PV devices with high power conversion efficiency (PCE) of 4.85%. This high PCE is found to occur for an optimal length of the NRs (≈290 nm) which coincides with the average penetration depth of PbS‐QDs into the porous TiO2‐NRs matrix, leading thereby to the formation of the largest extent of NH‐HJs. Most importantly, the PCE of these novel devices is found to be fairly stable for several months under ambient air. The addition of single‐wall carbon nanotubes (SWCNTs) onto the TiO2‐NRs prior to their decoration by PbS‐QDs is shown to further enhance their PCE to a value as high as 5.3%, because of additional light absorption and improved charge collection ensured by SWCNTs.  相似文献   

20.
To maximize the incident light, moth‐eye nano‐patterns were formed on a glass plate that was used as the protection glass for photovoltaic systems. These moth‐eye nano‐patterns were formed using a nano‐imprint lithography process and increased the transmittance of the glass plate by minimizing the reflection of light at the surface. After the formation of the moth‐eye nano‐patterns, the surface was coated with a trichloro‐silane based self‐assembled monolayer in order to create a hydrophobic surface because the hydrophobic surface induced a self‐cleaning effect. The transmittance of the glass plate increased from 91 to 94% at wavelength of 500 nm after the moth‐eye structure was introduced. Thus, the short circuit current (JSC) of the IV characteristics and the charged capacity of the photovoltaic system increased up to 6% after replacing the conventional protection glass with the moth‐eye nano‐patterned glass. The durability of the moth‐eye nano‐patterns was evaluated with respect to an acidic environment, high temperatures and UV irradiation. From these evaluation results, the values of the transmittance and contact angle did not decrease after the nano‐patterns were soaked in sulfuric acid solutions with a pH of 2.0 for 48 h, exposed to a temperature of 120°C for 48 h, and irradiated 10 times with UV light for 4 h. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号