首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Hybrid nanomaterials with tailored functions, consisting of self‐assembled peptides, are intensively applied in nanotechnology, tissue engineering, and biomedical applications due to their unique structures and properties. Herein, a peptide‐mediated biomimetic strategy is adopted to create the multifunctional 3D graphene foam (GF)‐based hybrid minerals. First, 2D peptide nanosheets (PNSs), obtained by self‐assembling a motif‐specific peptide molecule (LLVFGAKMLPHHGA), are expected to exhibit biofunctionality, such as the biomimetic mineralization of hydroxyapatite (HA) minerals. Subsequently, the noncovalent conjugation of PNSs onto GF support is utilized to form 3D GF‐PNSs hybrid scaffolds, which are suitable for the growth of HA minerals. The fabricated biomimetic 3D GF‐PNSs‐HA minerals exhibit adjustable shape, superlow weight (0.017 g cm?3), high porosity (5.17 m2 g?1), and excellent biocompatibility, proving potential applications in both bone tissue engineering and biomedical engineering. To the best of the authors' knowledge, it is the first time to combine 2D PNSs and GF to fabricate 3D organic–inorganic hybrid scaffold. Further development of these hybrid GF‐PNSs scaffolds can potentially lead to materials used as matrices for drug delivery or bone tissue engineering as proven via successful 3D scaffold formation exhibiting interconnected pore‐size structures suitable for vascularization and medium transport.  相似文献   

2.
The simple synthesis of ultralow‐density (≈2.32 mg cm?3) 3D reduced graphene oxide (rGO) aerogels that exhibit high electrical conductivity and excellent compressibility are described herein. Aerogels are synthesized using a combined hydrothermal and thermal annealing method in which hexamethylenetetramine is employed as a reducer, nitrogen source, and graphene dispersion stabilizer. The N‐binding configurations of rGO aerogels increase dramatically, as evidenced by the change in pyridinic‐N/quaternary‐N ratio. The conductivity of this graphene aerogel is ≈11.74 S m?1 at zero strain, whereas the conductivity at a compressive strain of ≈80% is ≈704.23 S m?1, which is the largest electrical conductivity reported so far in any 3D sponge‐like low‐density carbon material. In addition, the aerogel has excellent hydrophobicity (with a water contact angle of 137.4°) as well as selective absorption for organic solvents and oils. The compressive modulus (94.5 kPa; ρ ≈ 2.32 mg cm?3) of the rGO aerogel is higher than that of other carbon‐based aerogels. The physical and chemical properties (such as high conductivity, elasticity, high surface area, open pore structure, and chemical stability) of the aerogel suggest that it is a viable candidate for the use in energy storage, electrodes for fuel cells, photocatalysis, environmental protection, energy absorption, and sensing applications.  相似文献   

3.
Integration of 2D membranes into 3D macroscopic structures is essential to overcome the intrinsically low stretchability of graphene for the applications in flexible and wearable electronics. Herein, the synthesis of 3D graphene films (3D‐GFs) using chemical vapor deposition (CVD) is reported, in which a porous copper foil (PCF) is chosen as a template in the atmospheric‐pressure CVD preparation. When the 3D‐GF prepared at 1000 °C (noted as 3D‐GF‐1000) is transferred onto a polydimethylsiloxane (PDMS) membrane, the obtained 3D‐GF‐1000/PDMS hybrid film shows an electrical conductivity of 11.6 S cm?1 with good flexibility, indicated by small relative resistance changes (ΔR/R0) of 2.67 and 0.36 under a tensile strain of 50% and a bending radius of 1.6 mm, respectively. When the CVD temperature is reduced to 900 °C (generating a sample noted as 3D‐GF‐900), the 3D‐GF‐900/PDMS hybrid film exhibits an excellent strain‐sensing performance with a workable strain range of up to 187% and simultaneously a gauge factor of up to ≈1500. The 3D‐GF‐900/PDMS also shows a remarkable durability in resistance in repeated 5000 stretching‐releasing cycles. Kinetics studies show that the response of ΔR/R0 upon strain is related to the graphitization and conductivity of 3D‐GF which are sensitive to the CVD preparation temperature.  相似文献   

4.
A MoS2/graphene hybrid aerogel synthesized with two‐dimensional MoS2 sheets coating a high surface area graphene aerogel scaffold is characterized and used for ultrasensitive NO2 detection. The combination of graphene and MoS2 leads to improved sensing properties with the graphene scaffold providing high specific surface area and high electrical and thermal conductivity and the single to few‐layer MoS2 sheets providing high sensitivity and selectivity to NO2. The hybrid aerogel is integrated onto a low‐power microheater platform to probe the gas sensing performance. At room temperature, the sensor exhibits an ultralow detection limit of 50 ppb NO2. By heating the material to 200 °C, the response and recovery times to reach 90% of the final signal decrease to <1 min, while retaining the low detection limit. The MoS2/graphene hybrid also shows good selectivity for NO2 against H2 and CO, especially when compared to bare graphene aerogel. The unique structure of the hybrid aerogel is responsible for the ultrasensitive, selective, and fast NO2 sensing. The improved sensing performance of this hybrid aerogel also suggests the possibility of other 2D material combinations for further sensing applications.  相似文献   

5.
The local electrical properties of a conductive graphene/polystyrene (PS) composite sample are studied by scanning probe microscopy (SPM) applying various methods for electrical properties investigation. We show that the conductive graphene network can be separated from electrically isolated graphene sheets (GS) by analyzing the same area with electrostatic force microscopy (EFM) and conductive atomic force microscopy (C‐AFM). EFM is able to detect the graphene sheets below the sample surface with the maximal depth of graphene detection up to ≈100 nm for a tip‐sample potential difference of 3 V. To evaluate depth sensing capability of EFM, the novel technique based on a combination of SPM and microtomy is utilized. Such a technique provides 3D data of the GS distribution in the polymer matrix with z‐resolution on the order of ≈10 nm. Finally, we introduce a new method for data correction for more precise 3D reconstruction, which takes into account the height variations.  相似文献   

6.
Native tissues are endowed with a highly organized nanofibrous extracellular matrix (ECM) that directs cellular distribution and function. The objective of this study is to create a purely natural, uniform, and highly aligned nano­fibrous ECM scaffold for potential tissue engineering applications. Synthetic nanogratings (130 nm in depth) are used to direct the growth of human dermal fibroblasts for up to 8 weeks, resulting in a uniform 70 μm‐thick fibroblast cell sheet with highly aligned cells and ECM nanofibers. A natural ECM scaffold with uniformly aligned nanofibers of 78 ± 9 nm in diameter is generated after removing the cellular components from the fibroblast sheet. The elastic modulus of the scaffold is well maintained after the decellularization process because of the preservation of elastin fibers. Reseeding human mesenchymal stem cells (hMSCs) shows the excellent capacity of the scaffold in directing and supporting cell alignment and proliferation along the underlying fibers. The scaffold's biocompatibility is further examined by an in vitro inflammation assay with seeded macrophages. The aligned ECM scaffold induces a significantly lower immune response compared to its unaligned counterpart, as detected by the pro‐inflammatory cytokines secreted from macrophages. The aligned nanofibrous ECM scaffold holds great potential in engineering organized tissues.  相似文献   

7.
2D/3D hybrid cell culture systems are constructed by increasing the temperature of the thermogelling poly(ethylene glycol)‐poly(l ‐alanine) diblock copolymer (PEG‐l ‐PA) aqueous solution in which tonsil tissue‐derived mesenchymal stem cells and graphene oxide (GO) or reduced graphene oxide (rGO) are suspended, to 37 °C. The cells exhibit spherical cell morphologies in 2D/3D hybrid culture systems of GO/PEG‐l ‐PA and rGO/PEG‐l ‐PA by using the growth medium. The cell proliferations are 30%–50% higher in the rGO/PEG‐l ‐PA hybrid system than in the GO/PEG‐l ‐PA hybrid system. When chondrogenic culture media enriched with TGF‐β3 is used in the 2D/3D hybrid systems, cells extensively aggregate, and the expression of chondrogenic biomarkers of SOX 9, COL II A1, COL II, and COL X significantly increases in the GO/PEG‐l ‐PA 2D/3D hybrid system as compared with the PEG‐l ‐PA 3D systems and rGO/PEG‐l ‐PA 2D/3D hybrid system, suggesting that the GO/PEG‐l ‐PA 2D/3D hybrid system can be an excellent candidate as a chondrogenic differentiation platform of the stem cell. This paper also suggests that a 2D/3D hybrid system prepared by incorporating 2D materials with various surface biofunctionalities in the in situ forming 3D hydrogel matrix can be a new cell culture system.  相似文献   

8.
This study develops multimodal magnetic nanoclusters (M‐MNCs) for gene transfer, directed migration, and tracking of human mesenchymal stem cells (hMSCs). The M‐MNCs are designed with 5 nm iron oxide nanoparticles and a fluorescent dye (i.e., Rhodamine B) in the matrix of the Food and Drug Administration approved polymer poly(lactide‐co‐glycolide) using a nanoemulsion method. The synthesized M‐MNCs have a hydrodynamic diameter of ≈150 nm, are internalized by stem cells via endocytosis, and deliver genes with high efficiency. The cellular internalization and gene expression efficiency of the clustered nanoparticles are significantly higher than that of single nanoparticles. The M‐MNC‐labeled hMSCs migrate upon application of a magnetic force and can be visualized by both optical and magnetic resonance (MR) imaging. In animal models, the M‐MNC‐labeled hMSCs are also successfully tracked using optical and MR imaging. Thus, the M‐MNCs not only allow the efficient delivery of genes to stem cells but also the tracking of cells in animal models. Taken together, the results show that this new type of nanocomposite can be of great help in future stem cell research and in the development of cell‐based therapeutic agents.  相似文献   

9.
A hierarchical structure consisting of Ni–Co hydroxide nanopetals (NCHPs) grown on a thin free‐standing graphene petal foam (GPF) has been designed and fabricated by a two‐step process for pseudocapacitive electrode applications. The mechanical behavior of GPFs has been, for the first time to our knowledge, quantitatively measured from in situ scanning electron microscope characterization of the petal foams during in‐plane compression and bending processes. The Young's modulus of a typical GPF is 3.42 GPa, indicating its outstanding mechanical robustness as a nanotemplate. The GPF/NCHP electrodes exhibit volumetric capacitances as high as 765 F cm?3, equivalent to an areal capacitance of 15.3 F cm?2 and high rate capability. To assess practical functionality, two‐terminal asymmetric solid‐state supercapacitors with 3D GPF/NCHPs as positive electrodes are fabricated and shown to exhibit outstanding energy and power densities, with maximum average energy density of ≈10 mWh cm?3 and maximum power density of ≈3 W cm?3, high rate capability (a capacitance retention of ≈60% at 100 mA cm?2), and excellent long‐term cyclic stability (full capacitance retention over 15 000 cycles).  相似文献   

10.
This study characterizes a hybrid structure formed between graphene and organic dye molecules for use in photodetectors with spectral color selectivity. Rhodamine‐based organic dye molecules with red, green, or blue light absorption profiles are deposited onto a graphene surface by dip‐coating. UV–vis absorption spectroscopy, charge transport measurements, and density functional theory based calculations reveal that the photoresponses of the dye graphene hybrid films are governed by the light absorption of the dye molecules and also by the photo‐excited‐charge‐transfer‐induced photocurrent gain. The hybrid films respond only to photons with an energy exceeding the band gap of the immobilized dye. Dye‐Graphene charge transfer is affected by the distance and direction of the dipole moment between the two layers. The resulting hybrid films exhibit spectral color selectivities with responsivities of ≈103 A W?1 and specific detectivities of ≈1010 Jones. This study demonstrates the successful operation of photodetectors with a full‐color optical bandwidth using hybrid graphene structures coated with a mixture of dyes. The strategy of building a simple hybrid photodetector can further offer many opportunities to be also tuned for other optical functionalities using a variety of commercially available dye molecules.  相似文献   

11.
In this work, it is shown that the hydrophilic functionalized multiwall carbon nanotubes (MWCNs) can stabilize a large amount of pristine graphene nanosheets in pure water without the assistance of surfactants, ionic liquids, or hydrophilic polymers. Role of stabilizer is conveyed by highly hydrophilic carbon nanotubes, functionalized by dihydroxy phenyl groups, affording a stable dispersion at concentrations as high as 15 mg mL?1. Such multidimensional (2D/1D) graphene/MWCN hybrid is found to be dispersible also in other polar organic solvents such as ethanol, isopropanol, N,N‐dimethylformamide, ethylene glycol, and their mixtures. High‐resolution transmission microscopy and atomic force microscopy (AFM) including a liquid mode AFM manifest several types of interaction including trapping of multiwalled carbon nanotubes between the graphene sheets or the modification of graphene edges. Molecular dynamic simulations show that formation of an assembly is kinetically controlled. Importantly, the hybrid can be deposited on the paper by drop casting or dispersed in water‐soluble polymers resulting in record values of electrical conductivity (sheet resistance up to Rs ≈ 25 Ω sq?1 for free hybrid material and Rs ≈ 1300 Ω sq?1 for a polyvinilalcohol/hybrid composite film). Thus, these novel water dispersible carbon superstructures reveal a high application potential as conductive inks for inkjet printing or as highly conductive polymers.  相似文献   

12.
Time‐dependent photoemission spectroscopy is employed to study the kinetics of the hydro‐genation/deuteration reaction of graphene. Resulting in an unusual kinetic isotope effect, the graphene deuteration reaction proceeds faster than hydrogenation and leads to substantially higher maximum coverages of deuterium (D/C≈35% vs H/C≈25%). These results can be explained by the fact that in the atomic state H and D have a lower energy barrier to overcome in order to react with graphene, while in the molecular form the bond between two atoms must be broken before the capture on the graphene layer. More importantly, D has a higher desorption barrier than H due to quantum mechanical zero‐point energy effects related to the C–D or C–H stretch vibration. Molecular dynamics simulations based on a quantum mechanical electronic potential can reproduce the experimental trends and reveal the contribution of the constituent chemisorption, reflection, and associative desorption processes of H or D atoms onto graphene. Regarding the electronic structure changes, a tunable electron energy gap can be induced by both deuteration and hydrogenation.  相似文献   

13.
The development of highly efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for improving the efficiency of overall water splitting, but still remains challenging issue. Herein, 3D self‐supported Fe‐doped Ni2P nanosheet arrays are synthesized on Ni foam by hydrothermal method followed by in situ phosphorization, which serve as bifunctional electrocatalysts for overall water splitting. The as‐synthesized (Ni0.33Fe0.67)2P with moderate Fe doping shows an outstanding OER performance, which only requires an overpotential of ≈230 mV to reach 50 mA cm?2 and is more efficient than the other Fe incorporated Ni2P electrodes. In addition, the (Ni0.33Fe0.67)2P exhibits excellent activity toward HER with a small overpotential of ≈214 mV to reach 50 mA cm?2. Furthermore, an alkaline electrolyzer is measured using (Ni0.33Fe0.67)2P electrodes as cathode and anode, respectively, which requires cell voltage of 1.49 V to reach 10 mA cm?2 as well as shows excellent stability with good nanoarray construction. Such good performance is attributed to the high intrinsic activity and superaerophobic surface property.  相似文献   

14.
As the portable device hardware has been increasing at a noticeable rate, ultrathin thermal conducting materials (TCMs) with the combination of high thermal conductivity and excellent electromagnetic interface (EMI) shielding performance, which are used to efficiently dissipate heat and minimize EMI problems generated from electronic components (such as high speed processors), are urgently needed. In this work, graphene oxide (GO) films are fabricated by direct evaporation of GO suspension under mild heating, and ultrathin graphite‐like graphene films are produced by graphitizing GO films. Further investigation demonstrates that the resulting graphene film with only ≈8.4 μm in thickness not only possesses excellent EMI shielding effectiveness of ≈20 dB and high in‐plane thermal conductivity of ≈1100 W m‐1 K‐1, but also shows excellent mechanical flexibility and structure integrity during bending, indicating that the graphitization of GO film could be considered as a new alternative way to produce excellent TCMs with efficient EMI shielding.  相似文献   

15.
3D printing graphene aerogel with periodic microlattices has great prospects for various practical applications due to their low density, large surface area, high porosity, excellent electrical conductivity, good elasticity, and designed lattice structures. However, the low specific capacitance limits their development in energy storage fields due to the stacking of graphene. Therefore, constructing a graphene‐based 2D materials hybridization aerogel that consists of the pseduocapacitive substance and graphene material is necessary for enhancing electrochemical performance. Herein, 3D printing periodic graphene‐based composite hybrid aerogel microlattices (HAMs) are reported via 3D printing direct ink writing technology. The rich porous structure, high electrical conductivity, and highly interconnected networks of the HAMs aid electron and ion transport, further enabling excellent capacitive performance for supercapacitors. An asymmetric supercapacitor device is assembled by two different 4‐mm‐thick electrodes, which can yield high gravimetric specific capacitance (Cg) of 149.71 F g?1 at a current density of 0.5 A g?1 and gravimetric energy density (Eg) of 52.64 Wh kg?1, and retains a capacitance retention of 95.5% after 10 000 cycles. This work provides a general strategy for designing the graphene‐based mixed‐dimensional hybrid architectures, which can be utilized in energy storage fields.  相似文献   

16.
Carbon based materials as one promising cathode to accommodate the insoluble and insulating discharge products (Li2O2) for lithium oxygen (Li‐O2) batteries have attracted great attention due to their large energy density store ability compared with the other carbon‐free cathodes. However, the side reaction occurring at carbon/Li2O2 interfaces hinders their large‐scale application in Li‐O2 batteries. Herein, a simple and cost‐effective strategy is developed for the growth of core‐shell‐like Co/CoO nanoparticles on 3D graphene‐wrapped carbon foam using 3D melamine foam as the initial backbone. This unique 3D hierarchical carbonized melamine foam‐graphene‐Co/CoO hybrid (CMF‐G‐Co/CoO) with a continuous conductive network and elastic properties is used as binder‐free oxygen electrode for Li‐O2 batteries. Electrochemical and structural measurements show that a synergistic effect is observed between Co/CoO and graphene, where Li2O2 grows on the Co/CoO surfaces instead of the carbon surfaces at the initial discharge state (500 mAh ), indicating the reduced carbon/Li2O2 interfaces and alleviative side reactions during the electrochemical process. Importantly, the CMF‐G‐Co/CoO electrode can achieve greatly improved cycle life over the electrode without aid of the Co/CoO. Furthermore, it delivers a large capacity of ≈7800 mAh and outstanding rate capability, exhibiting the great potential for the application in Li‐O2 batteries.  相似文献   

17.
Functional graphene optical sensors are now viable due to the recent developments in hand‐held Raman spectroscopy and the chemical vapor deposition (CVD) of graphene films. Herein, the strain in graphene/poly (methyl methacrylate) sensor coatings is followed using Raman band shifts. The performance of an “ideal” mechanically‐exfoliated single crystal graphene flake is compared to a scalable CVD graphene film. The dry‐transferred mechanically exfoliated sample has no residual stresses, whereas the CVD sample is in compression following the solvent evaporation during its transfer. The behavior of the sensors under cyclic deformation shows an initial breakdown of the graphene‐polymer interface with the interface then stabilizing after several cycles. The Raman 2D band shift rates per unit strain of the exfoliated graphene are ≈35% higher than CVD graphene making the former more strain sensitive. However, for practical wide‐area applications, CVD graphene coatings are still viable candidates as a Raman system can be used to read the strain in any 5 μm diameter spot in the coating to an absolute accuracy of ≈0.01% strain and resolution of ≈27 microstrains (μs), which compares favorably to commercial photoelastic systems.  相似文献   

18.
Electrically insulating polymer dielectrics with high energy densities and excellent thermal conductivities are showing tremendous potential for dielectric energy storage. However, the practical application of polymer dielectrics often requires mutually exclusive multifunctional properties such as high dielectric constants, high breakdown strengths, and high thermal conductivities. The rational assembly of 2D nanofillers of boron nitride nanosheets (BNNS) and reduced graphene oxide (rGO) into a well‐aligned micro‐sandwich structure in polyimide (PI) composites is reported. The alternating stacking of rGO and BNNS synergistically exploits the large difference in their electrical conductivities to yield a high dielectric constant with a moderate breakdown strength. Moreover, the distinctively separated rGO and BNNS layers give rise to higher thermal conductivities of composites than those containing mixed fillers because of reduced phonon scattering at the interfaces between two identical fillers, as verified by molecular dynamics simulations. Consequently, the micro‐sandwich nanocomposite prevails over the PI film with a simultaneously high dielectric constant of ≈579, a high energy density (43‐fold higher than PI) and an excellent thermal conductivity (11‐fold higher than PI) at a low hybrid filler content of only 2.5 vol%. The multifunctional nanocomposites developed in this work are promising for flexible dielectrics with excellent heat dissipation.  相似文献   

19.
Due to their exceptional orientation of 2D nanofillers, layer‐by‐layer (LbL) assembled polymer/graphene oxide thin films exhibit unmatched mechanical performance relative to any conventionally produced counterparts with similar composition. Unprecedented mechanical property improvement, by replacing graphene oxide with pristine graphene, is demonstrated in this work. Polyvinylpyrrolidone‐stabilized graphene platelets are alternately deposited with poly(acrylic acid) using hydrogen bonding assisted LbL assembly. Transmission electron microscopy imaging and the Halpin‐Tsai model are used to demonstrate, for the first time, that intact graphene can be processed from water to generate polymer nanocomposite thin films with simultaneous parallel‐alignment, high packing density, and exfoliation. A multilayer thin film with only 3.9 vol% of highly exfoliated, and structurally intact graphene, increases the elastic modulus (E) of a polymer multilayer thin film by 322% (from 1.41 to 4.81 GPa), while maintaining visible light transmittance of ≈90%. This is one of the greatest improvements in elastic modulus ever reported for a graphene‐filled polymer nanocomposite with a glassy (E > 1 GPa) matrix. The technique described here provides a powerful new tool to improve nanocomposite properties (mechanical, gas transport, etc.) that can be universally applied to a variety of polymer matrices and 2D nanoplatelets.  相似文献   

20.
Porous graphene has been widely applied in energy storage, electrocatalysis, photoelectron devices, etc. However, the producing process for porous graphene usually needs long time and is a tedious step. In this work, porous graphene is prepared with controllable pore size by using active metal nanoparticles to catalytically oxidize carbon under microwave combustion process within tens of seconds. The ion exchange membrane based on porous graphene with ≈5 nm pore diameter exhibits a great performance for salinity gradient power generation application with a power density output of ≈1.15 W m?2. This work highlights a new strategy for the design and synthesis of pore‐size‐controllable porous graphene and provides new opportunities for 2D porous nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号