首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
通过化学原位聚合法成功制备了包覆良好的LiFePO4/聚噻吩(PTP)复合材料。采用傅里叶红外光谱(FTIR)和透射电镜(TEM)分别对PTP与LiFePO4之间发生相互作用及包覆情况进行系统地研究。采用电化学阻抗谱及恒电流充放电法研究了复合材料的电化学性能。结果表明,当PTP含量为9.6%时,能在LiFePO4的表面形成均匀的包覆层,试样具有最佳的电化学性能,C/12倍率下首次放电容量为158.2mAh/g,具有优良的循环性能及倍率性能。  相似文献   

2.
采用环氧树脂为碳源制备出碳芯结构LiFePO4/C复合材料.利用X射线衍射、扫描电镜、透射电镜和X光电子能谱等分别对复合材料的晶体结构、表面形貌及表面成分进行表征,采用恒电流充放电和电化学阻抗方法研究试样的电化学性能.实验结果表明:碳芯结构复合材料是由无定形碳线和纳米LiFePO4颗粒组成.碳芯结构LiFePO4/C复合材料在15mA/g的电流密度下,首次放电容量达到166mAh/g,当电流密度增加到750mA/g,放电容量高达131mAh/g,经过50次循环后,容量保持率高达99.2%.  相似文献   

3.
用两种碳源制备高性能LiFePO4/C正极材料   总被引:6,自引:0,他引:6  
为了提高LiFePO4材料的电化学性能,以碳溶胶和葡萄糖两种物质为碳源、采用高温固相法制备了LiFePO4/C复合正极材料.通过XRD、TEM、恒电流充放电等方法研究了材料的结构与电化学性能.XRD结果表明,两种碳源的添加对LiFePO4的晶体结构没有影响.从TEM图上可观测到颗粒外部明显的碳包覆层.电化学性能测试表明,在同样倍率下,以两种碳源制备的LiFePO4/C材料放电比容量高于以单一碳源制备的LiFePO4/C,且表现出优良倍率性能和循环稳定性:在0.1C下的放电比容量达162mAh/g,1C下放电比容量为157mAh/g,循环20次后容量没有任何衰减.  相似文献   

4.
用碳热还原法制备LiFePO4/C复合正极材料   总被引:2,自引:0,他引:2  
以Fe2O3为铁源,以葡萄糖为碳添加剂,利用碳热还原法成功地制备了LiFePO4/C复合材料.研究了不同焙烧温度对样品性能的影响.利用X射线衍射仪、扫描电镜和碳硫(质量分数)分析方法对所得样品的晶体结构、表面形貌、含碳量进行分析研究.研究结果表明,样品中碳含量(质量分数)为10%的LiFePO4/C复合材料为单一的橄榄石型晶体结构, 碳的加入使LiFePO4 颗粒粒径减小.碳分散于晶体颗粒之间,增强了颗粒之间的导电性.电化学性能测试结果表明,LiFePO4/C充放电性能和循环性能都得到显著改善.其中,碳含量为10%在700℃下焙烧8h合成出的样品电化学性能最佳,在0.1、0.5和1C倍率下放电,LiFePO4/C首次放电比容量达159.3、137.0、130.6mAh/g,充放电循环30次,容量只衰减了2.2%、5.3%、7.6%.其表现出良好的循环性能.  相似文献   

5.
通过聚苯胺包覆法制备LiFePO4/C,研究了苯胺用量对LiFePO4/C电化学性能的影响。采用X射线衍射(XRD)测试材料结构并用扫描电镜(SEM)和透射电镜(TEM),观察材料形貌及碳层包覆情况。结果表明:该方法制得的LiFePO4结晶度高并且具有规整的球状结构,粒径在50~80nm之间,碳层厚度约为2.5nm。经电化学性能测试发现:在相同合成工艺下,苯胺用量对合成的LiFePO4/C的电化学性能有很大影响.当苯胺加入量为0.5mL时所得LiFePO4/C(6mmol)的电化学性能最佳,0.2C下首次放电比容量可达161.6mAh·g-1,5C下放电比容量可达112.2mAh·g-1,且在5C下循环300次无明显衰减。  相似文献   

6.
采用机械球磨结合微波辐射工艺合成C包覆锂离子电池正极材料LiFePO4/C.通过X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试研究了不同C源和掺C量对样品物相结构、形貌和电化学性能的影响.实验结果表明,微波法可以快速合成LiFePO4/C正极材料;以乙炔黑作为C源,掺杂8%(质量分数)所合成的样品具有最好的电化学性能,在室温下以20mA/g进行充放电测试,其首次放电容量为148.44mAh/g,10次循环后仍有144.74mAh/g,容量保持率为97.51%.  相似文献   

7.
不同碳源对LiFePO4/C复合材料性能的影响   总被引:4,自引:0,他引:4  
采用机械液相活化法与高温固相法相结合制备了锂离子电池正极材料LiFePO4和LiFePO4/C.考察了蔗糖、柠檬酸、葡萄糖、酒石酸等不同碳源对材料性能的影响,并采用XRD、 SEM和恒电流充放电测试等方法对材料的结构、表面形貌及电化学性能进行了研究,利用Raman光谱和TEM分析材料中碳的存在状态.结果表明,得到的样品结构均为橄榄石型,碳源的加入能有效地减小材料的颗粒尺寸,并且材料的电导率比纯LiFePO4的电导率提高了5个数量级.LiFePO4/C样品的表面包覆层均为非晶碳,以柠檬酸为碳源合成的LiFePO4/C材料,具有较小的颗粒尺寸,均匀多孔的表面碳包覆层和最佳的电化学性能.在0.1C下第3次的放电比容量达141.0mAh/g,循环10次后容量无衰减.  相似文献   

8.
以LiOH、FeSO4和H3PO4为原料,采用水热法合成了结晶性良好的LiFePO4颗粒。在此基础上,以葡萄糖为碳源,掺入不同量的碳,形成LiFePO4/C复合材料。样品经过XRD、SEM、恒流充放电测试、EIS表征,结果表明,掺碳提高了LiFePO4的比容量、循环性能和锂离子的扩散动力学性能。电化学测试表明,LiFePO4/C放电比容量开始随着碳含量的增加而上升,随后降低。其中,3%碳含量的LiFePO4/C样品具有最佳的放电性能,0.1C倍率下达到145mAh/g,0.2C倍率下达到142mAh/g,50次循环后仅衰减0.7%。  相似文献   

9.
李军  黄慧民  魏关锋  夏信德  李大光 《材料导报》2007,21(11):125-126,129
为提高LiFePO4的电化学性能,通过固相合成法制备了掺碳的LiFePO4正极材料,并用XRD、SEM、电化学工作站及充放电测试等对样品的性能进行了研究分析.结果表明,少量的碳掺杂并未改变LiFePO4的晶体结构但显著改善了其电化学性能,LiFePO4/C样品的粒度较小,粒径分布均匀,0.1C首次放电比容量为141.9mAh/g,循环50次后容量下降了11.2mAh/g,以1C倍率首次放电比容量为126.5mAh/g,循环50次后容量保持率为87.2%.  相似文献   

10.
采用葡萄糖、环氧树脂、酚醛树脂为碳源制备了LiFePO4/C复合材料。利用X射线衍射、扫描电镜等方法对复合材料进行研究。结果表明,葡萄糖获得了碳包覆复合材料,而环氧树脂、酚醛树脂则得到了碳芯结构复合材料。碳芯结构复合材料的电化学性能优于碳包覆复合材料,电流密度为15mA/g时,试样C、D的放电容量分别为165、167mAh/g;电流密度为600mA/g时,试样C、D的放电容量分别为139.4、145.5mAh/g,经过50循环后容量保持率分别高达99.2%、99.5%。  相似文献   

11.
通过对氧化石墨烯(GO)进行微观调控处理得到少层GO。采用喷雾干燥再高温改性的方法制备LiFePO_4/石墨烯锂离子电池复合正极材料;GO还原后即可得到石墨烯,其优良的导电性可以提高LiFePO_4的电子传输能力。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试技术等方法对复合材料的结构、形貌及电化学性能进行表征。石墨烯的复合使材料颗粒间构建空间三维导电网络,提高了电解质/电极材料界面的电荷转移速率,改善了LiFePO_4的电化学性能。电化学测试结果表明,在0.1C时LiFePO_4的放电比容量为155mAh/g,LiFePO_4/石墨烯复合材料的放电比容量为164mAh/g;1C和2C倍率时,LiFePO_4/石墨烯复合材料的放电比容量分别为140,119mAh/g。  相似文献   

12.
采用微波化学气相沉积法一步合成了热解炭包覆磷酸铁锂/气相生长炭纤维复合正极材料. 借助X射线衍射仪、场发射扫描电子显微镜、高分辨透射电镜和电化学测试仪等测试手段研究了不同制备温度对材料晶体结构、显微形貌和电化学性能的影响. 结果表明, 当制备温度由500℃升至600℃时, 磷酸铁锂主晶相的颗粒尺寸没有发生明显变化, 而原位VGCF的网络程度却明显增加, 材料的放电比容量随之提高; 当制备温度进一步升高到700℃时, 磷酸铁锂颗粒异常生长现象加剧, VGCF直径较大且粗细不均, 材料的电化学性能变差. 研究发现, 当温度为600℃时, 材料表现出较优的电化学性能, 25℃在0.2C、0.5C、1C和3C倍率下的放电比容量分别可达163、159、153和143mAh/g.  相似文献   

13.
以FeSO_4·7H_2O,LiOH·H_2O和H_3PO_4为原料,葡萄糖为改性剂,采用微波水热法合成具有正交晶系橄榄石结构的LiFePO_4/C复合材料。借助XRD,SEM,EDS和电化学性能测试等分析,研究葡萄糖对产物组成、结构、微观形貌和电化学性能的影响。结果表明:葡萄糖改性后,LiFePO_4结构中Fe,P和O原子间的结合增强,颗粒尺寸减小,表面有碳层包覆,电化学性能提高。LiFePO4/C在0.1C倍率下的首次放电比容量为125.6mAh/g;1.0C倍率下的首次放电比容量为106.2mAh/g,30次循环后的容量保持率为91.3%。  相似文献   

14.
邓凌峰  魏银烨 《材料导报》2011,25(24):54-57
以NH4H2PO4、锂盐和纯铁为主要原料,采用电化学法合成磷酸锂铁前驱体,再通过磷酸锂铁前驱体合成锂离子电池正极材料LiFePO4/C。通过X射线衍射(XRD)、扫描电镜(SEM)及充放电性能测试等方法对其晶体结构、微观形貌和电化学性能进行分析研究。结果表明,LiFePO4/C具有单一的橄榄石型晶体结构。其中在无水乙醇溶剂中合成的LiFePO4/C正极材料粒径细小且分布均匀,具有最好的电化学性能,在0.2C的放电电流下,首次放电比容量达到142.3mAh/g,充放电循环30次后放电比容量仍保持在141.2mAh/g。  相似文献   

15.
采用化学氧化法, 以吡咯为单体、 三氯化铁为氧化剂、 苯磺酸钠为掺杂剂在磷酸铁锂颗粒表面进行原位聚合, 制备了聚吡咯/磷酸铁锂(PPy/LiFePO4)复合材料。用FTIR、 XRD和SEM对PPy/LiFePO4复合材料进行了结构与形貌表征。用电化学工作站和充放电测试系统对复合材料的电化学性能进行了表征。结果表明: PPy/LiFePO4复合材料作锂二次电池正极具有良好的充放电循环性能。当PPy质量分数为17%, 充放电电流为0.1 mA时, PPy/LiFePO4复合材料最高放电比容量达163 mAh·g-1, 50次循环之后放电比容量仍为初始时的94.9%; 与LiFePO4相比, 当PPy的含量适当时, PPy/LiFePO4复合正极材料的放电比容量会有明显提高。PPy的加入提高了LiFePO4的电子电导率, 从而提高了活性物质有效利用率, 因此PPy/LiFePO4复合材料的比容量和循环性能均得到了提升。  相似文献   

16.
本文以FeSO_4、H_3PO_4和LiOH为原料,采用超临界水热过程制备了亚微米级LiFePO_4颗粒.在此基础上,为了提升制备的LiFePO_4正极材料的物理和电化学性能,对其进行了后续煅烧碳包覆改性研究.同时,通过XRD、SEM、充放电测试、CV和EIS测试手段,对LiFePO_4正极材料改性前后的结构、形貌和电化学性能进行了表征.结果表明:后续固相煅烧碳包覆改性能够显著改善LiFePO_4的结晶性能,减小颗粒粒径,降低电荷传递阻抗,以及大幅度地提升放电容量和循环性能;以PVP为模板剂、蔗糖为碳源,700℃煅烧1 h得到的LiFePO_4/C颗粒粒径小、分布均一,室温0.2 C倍率的首圈放电比容量为153.1 mAh/g,1 C倍率充放电时,放电比容量可保持在144.2 mAh/g,1 C循环50次,容量保持率达到97.1%.  相似文献   

17.
以Fe3+为铁源,采用控制结晶技术合成了纳米FePO4.xH2O,将FePO4.xH2O于500℃热处理4 h后得到纳米FePO4前驱体,然后通过碳热还原在不同温度下煅烧合成橄榄石结构的纳米LiFePO4/C样品.采用差热/热重、X射线衍射、扫描电镜、比表面测试、电化学性能测试等分析测试方法对纳米FePO4.xH2O、FePO4前驱体及不同煅烧温度下制得的纳米LiFePO4/C样品进行表征.研究结果表明,700℃烧结10 h合成LiFePO4/C样品的粒径在40~100 nm左右,比表面积为79.8 m2/g;700℃煅烧合成样品在电压2.5~4.2 V,倍率为0.1C、1C、5C、10C、15C时的放电比容量分别达到156.5、134.9、105.8、90.3和80.9 mAh/g,具有较好的倍率性能;样品还表现出较好的容量保持率.  相似文献   

18.
以碳酸锂、草酸亚铁、磷酸二氢铵、葡萄糖为原料,添加不同的过渡金属乙酸盐(乙酸锰、乙酸钴、乙酸镍、乙酸锌),在氩气保护下采用高温固相法制备LiFePO4/C复合材料.采用X射线衍射、扫描电子显微镜、同步热分析、恒电流充放电、电化学阻抗、循环伏安等方法研究掺杂金属离子及掺杂量对LiFePO4/C晶体结构和电化学性能的影响.结果表明,LiFe0.9M0.1PO4/C(M=Mn、Co、Ni、Zn)样品的晶体结构均与橄榄石型LiFePO4相同.掺杂过渡金属阳离子可以提高LiFeP04/C的还原电位,降低氧化电位,缩小氧化还原峰间距,提高化学反应的可逆性.掺杂后的样品在5C下的放电性能较好,以LiFe0.9Ni0.1PO4/C的放电容量最高,达到89 mAh/g.  相似文献   

19.
The nano-metastructured LiFePO4/C composites were synthesized by carbothermal reduction method using starch gel as carbon source and dispersing media to obtain high tap density LiFePO4 with excellent electrochemical performance. The raw materials were coated by starch gel as compact precursors, which was sintered at 750 degrees C for 8 h to obtain high-density LiFePO4/C composite aggregated with nano-sized particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations showed that the primary particles had an average size of about 50-80 nm and the aggregates had a homogeneous particle size distribution of about 400 nm. The asprepared samples had a shortened lithium-ion diffusion length but with higher tap density, thus leading to the excellent electrochemical performance of the cathode materials. Electrochemical results showed that the samples delivered high discharge capacities of 155.6 and 120.7 mAh/g at 0.2C and 5C rates, respectively, with excellent cycling performance.  相似文献   

20.
利用不同的锂化合物Li2CO3、LiOH.H2O、LiNO3、LiF作为锂源,采用二步固相法合成了LiFePO4/C,研究了不同锂源对LiFePO4组织结构和电化学性能的影响。结果表明,在相同的合成工艺条件下,采用4种不同锂源合成的LiFePO4的电化学性能表现出明显差异。采用LiOH.H2O合成的LiFe-PO4的电化学性能最佳,0.1C下的放电比容量为161mAh/g,1C下的放电比容量达117mAh/g,且0.5C下循环容量无衰减。采用不同锂源合成的LiFePO4电化学性能差异的原因与LiFePO4的颗粒大小、粒径分布、团聚程度及是否存在杂相有直接关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号