首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article concentrates on an adaptive finite-time fault-tolerant fuzzy tracking control problem for nonstrict feedback nonlinear systems with input quantization and full-state constraints. By utilizing the fuzzy logic systems and less adjustable parameters method, the unknown nonlinear functions are addressed in each step process. In addition, a dynamic surface control technique combined with fuzzy control is introduced to tackle the variable separation problem. The problem for the effect of quantization and unlimited number of actuator faults is tackled by a damping term with smooth function in the intermediate control law. Finite-time stability is achieved by combining barrier Lyapunov functions and backstepping method. The finite-time controller is designed such that all the responses of the systems are semiglobal practical finite-time stable and ensured to remain in the predefined compact sets while tracking error converges to a small neighborhood of the origin in finite time. Finally, simulation examples are utilized to testify the validity of the investigated strategy.  相似文献   

2.
In this paper, the problem of adaptive fuzzy finite-time consensus tracking control for multiple Euler-Lagrange systems (ELSs) with uncertain dynamics and unknown control directions (UCDs) is investigated. The computational complexity problem in conventional backstepping is avoided by using finite-time command filter (FTCF), and the error in the filtering process is eliminated through error compensation signals. The fuzzy logic system combined with the adaptive control technique is applied to approximate and estimate the unknown nonlinear dynamics of ELS. The Nussbaum function-based continuous and nonsmooth input control torque is established to eliminate the influence of UCDs, and the proposed control scheme can guarantee the consensus tracking errors converge to the desired neighborhood of the origin within a finite time. Numerical simulation is used to test the effectiveness of the given algorithm.  相似文献   

3.
This paper studies an observer‐based adaptive fuzzy control problem for stochastic nonlinear systems in nonstrict‐feedback form. The unknown backlash‐like hysteresis is considered in the systems. In the design process, the unknown nonlinearities and unavailable state variables are tackled by introducing the fuzzy logic systems and constructing a fuzzy observer, respectively. By using adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy control algorithm is developed. For the closed‐loop system, the proposed controller can guarantee all the signals are 4‐moment semiglobally uniformly ultimately bounded. Finally, simulation results further show the effectiveness of the presented control scheme.  相似文献   

4.
In this article, the adaptive finite-time fault-tolerant control problem is considered for a class of switched nonlinear systems in nonstrict-feedback form with actuator fault. The problem of finite-time fault-tolerant control is solved by introducing a finite-time performance function. Meanwhile, the completely unknown nonlinear functions exist in the switched system are identified by the neural networks. Based on the common Lyapunov function method with adaptive backstepping technique, the finite-time fault-tolerant controller is designed. The proposed control strategy can guarantee that the tracking error converges to a prescribed zone at a finite-time and all system variables remain semiglobally practical finite-time stable. Numerical examples are offered to verify the feasibility of the theoretical result.  相似文献   

5.
This article studies the finite-time output regulation problem for nonlinear strict-feedback systems with completely unknown control directions and unknown functions. First, according to the necessary conditions for the solvability of the output regulation problem, the output regulation problem of nonlinear strict-feedback systems and the external system is transformed into a stabilization problem of nonlinear systems. Second, an internal model with external signals is designed. Third, based on finite time, fuzzy control, output feedback control, and Nussbaum gain functions, the control law is designed so that all signals of the closed-loop system are the semi-global practically finite-time stable (SGPFS), and the tracking error converges to a small neighborhood of the origin in a finite-time. Finally, the proposed algorithm is applied to the finite-time tracking problem of Chua's oscillator system.  相似文献   

6.
In this article, a novel fuzzy adaptive finite-time nonsmooth controller is developed to handle the finite-time tracking problem for a class of uncertain nonlinear systems. Different from traditional fuzzy adaptive approximation methods, proposed method contains only one adaptive parameter, no matter how many states there are in the system. By constructing a new Lyapunov function with prescribed performance bound, the transient and steady performances of control system can be ensured. Further, based on a criterion of finite-time semiglobal practical stability and backstepping technology, a novel fuzzy adaptive finite-time nonsmooth control method is designed. It can be demonstrated that proposed control can effectively ensure tracking error tends to small neighborhood in a finite time. Finally, two examples have been simulated by the proposed control method, and it shows effective tracking performance.  相似文献   

7.
In this article, the problem of output feedback tracking control for uncertain Markov jumping nonlinear systems is studied. A finite-time control scheme based on command filtered backstepping and adaptive neural network (NN) technique is given. The finite-time command filter solves the problem of differential explosions for virtual control signals, the NN is utilized to approximate the uncertain nonlinear dynamics and the adaptive NN observer is applied to restructure the state of system. The finite-time error compensation mechanism is established to compensate the errors brought by filtering process. The proposed finite-time tracking control algorithm can ensure that the solution of the closed-loop system is practically finite-time stable in mean square. Two simulation examples are employed to demonstrate the effectiveness of the proposed control algorithm.  相似文献   

8.
The trajectory tracking control problem for a class of nonlinear systems with uncertain parameters is considered in this article. A new adaptive finite-time tracking control is designed based on the adaptive backstepping method via the command filters. The command filter mechanism can avoid the calculation of partial derivatives and solve the “explosion of complexity” in the backstepping design. The compensation signals are introduced to eliminate errors produced by the command filters. The proposed adaptive backstepping control can guarantee the tracking error remains in a small neighborhood of the origin in finite time, while the practical finite-time stability of the control systems with uncertain parameters is proven by the stability criterion. The effectiveness of the proposed scheme is verified by some simulation results.  相似文献   

9.
This article studies the adaptive fuzzy finite-time quantized control problem of stochastic nonlinear nonstrict-feedback systems with full state constraints. During the control design process, fuzzy logic systems are used to identify the unknown nonlinear functions, integral barrier Lyapunov functions are employed to solve the state constrained problem. In the frame of backstepping design, an adaptive fuzzy finite-time quantized control scheme is developed. Based on the stochastic finite-time Lyapunov stability theory, it can be guaranteed that the closed-loop system is semiglobal finite-time stable in probability, and the tracking errors converge to a small neighborhood of the origin in a finite time. Finally, two simulation examples are provided to testify the effectiveness of the developed control scheme.  相似文献   

10.
The article investigates the finite-time adaptive fuzzy control for a class of nonlinear systems with output constraint and input dead-zone. First, by skillfully combining the barrier Lyapunov function, backstepping design method, and finite-time control theory, a novel adaptive state-feedback tracking controller is constructed, and the output constraint of the nonlinear system is not violated. Second, the fuzzy logic system is used to approximate unknown function in the nonlinear system. Third, the finite-time command filter is introduced to avoid the problem of “complexity explosion” caused by repeated differentiations of the virtual control signal in conventional backstepping control schemes. Meanwhile, a new saturation function is added in the compensating signal for filter error to improve control accuracy. Finally, based on Lyapunov stability analysis, all the signals of the closed-loop are proved to be semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood region of the origin in a finite time. A simulation example is presented to demonstrate the effectiveness for the proposed control scheme.  相似文献   

11.
In this paper, an adaptive fuzzy backstepping dynamic surface control (DSC) approach is developed for a class of MIMO nonlinear systems with input delays and state time‐varying delays. The unknown continuous nonlinear functions are expressed as the linearly parameterized form by using the fuzzy logic systems, and then, by combining the backstepping technique, the appropriate Lyapunov–Krasovskii functionals, and the ‘minimal learning parameters’ algorithms with the DSC approach, the adaptive fuzzy tracking controller is designed. Our development is able to eliminate the problem of ‘explosion of complexity’ inherent in the existing backstepping‐based methods. It is proven that the proposed design method can guarantee that all the signals in the closed‐loop system are bounded and the tracking error is smaller than a prescribed error bound. Finally, simulation results are provided to show the effectiveness of the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper focuses on a finite‐time adaptive fuzzy control problem for nonstrict‐feedback nonlinear systems with actuator faults and prescribed performance. Compared with existing results, the finite‐time prescribed performance adaptive fuzzy output feedback control is under study for the first time. By designing performance function, the transient performance of the corresponding controlled variable is maintained in a prescribed area. Combining the finite‐time stability criterion with backstepping technique, a feasible adaptive fault‐tolerant control scheme is proposed to guarantee that the system output converges to a small neighborhood of the origin in finite time, and the closed‐loop signals are bounded. Finally, simulation results are shown to illustrate the effectiveness of the presented control method.  相似文献   

13.
This article addresses an adaptive fuzzy practical fixed-time tracking control for nonlinear systems with unknown actuator constraints and uncertainty functions. First, fuzzy logic systems (FLSs) are used to identify uncertain functions. Then, by utilizing FLSs, backstepping technique, and finite-time stability theory, an adaptive fuzzy practical fixed-time control is proposed to obtain satisfactory tracking performance even when the actuator faults. The theoretical analysis verified that the closed-loop systems is practical fixed-time stable under the proposed control strategy, the tracking error converges to a small neighborhood of the origin in a fixed time, and the convergence time is independent of the state conditions. Finally, both numerical simulation and physical example demonstrates the effectiveness of the proposed control strategy.  相似文献   

14.
This article focuses on the finite-time adaptive fuzzy control problem based on command filtering for stochastic nonlinear systems subject to input quantization. Fuzzy logic systems are employed to estimate unknown nonlinearities. In the control design, the hysteretic quantized input is decomposed into two bounded nonlinear functions, which solves the chattering problem. Meanwhile, an adaptive fuzzy controller is presented by the combination of command filter technique and backstepping control, which eliminates the computational complexity existing in traditional backstepping design. Under the proposed adaptive mechanism, all the closed-loop signals remain bounded while the desired system performance can be realized within finite time. The main significance of this work is that (1) the filtering error can be solved on the basis of the designed compensating signals; (2) the requirement of adaptive parameters is decreased to only one, which simplifies the controller design process and may improve the control performance. Two simulation examples are used to validity of the developed scheme.  相似文献   

15.
This article investigates the issue of adaptive finite-time tracking control for a category of output-constrained nonlinear systems in a non-strict-feedback form. First, by utilizing the structural characteristics of radial basis function neural networks (RBF NNs), a backstepping design method is extended from strict-feedback systems to a kind of more general systems, and NNs are employed to approximate unknown nonlinear functions. In addition, the system output is constrained to the specified region by applying the barrier Lyapunov function (BLF) technique. Furthermore, the finite-time stability of the system is proved by employing the Bhat and Bernstein theorem. As a result, an adaptive finite-time tracking control scheme for the output-constrained nonlinear systems with non-strict-feedback structure is proposed by applying RBF NNs, BLF, finite-time stability theory, and adaptive backstepping technique. It is demonstrated the finite-time stability of the system, the prescribed convergence of the system output and tracking error, the boundedness of adaptive parameters and state variables. Finally, a simulation example is implemented to illustrate the effectiveness of the presented neural control scheme.  相似文献   

16.
In this paper, the adaptive fuzzy controller design problem is investigated for a class of switched nonlinear systems in nonstrict feedback form, in which the unknown functions are considered and are approximated. Moreover, the system states are constrained in corresponding compact. By using Barrier Lypunov function method and backstepping technique, the adaptive fuzzy controller is designed such that all the signals in the closed-loop system are bounded, the system output can track the desired signal to small compact, and all the system states satisfy the constraint conditions. Finally, the simulation results show the effectiveness of the proposed method.  相似文献   

17.
This article focuses on the decentralized adaptive fuzzy fixed-time fault-tolerant control issue for the error-constrained interconnected nonlinear systems with unknown actuator faults possessing dead zone. The unknown nonlinear functions can be modeled via fuzzy logic systems. By utilizing the parameter estimation method, the effect of unknown actuator faults possessing dead zone can be compensated. To guarantee the predefined dynamic performance of state tracking errors, the barrier Lyapunov functions and prescribed performance functions are introduced. Then, a dual-performance fault-tolerant control method that can guarantee fast transient performance and predefined performance of state tracking errors is proposed via using the decentralized backstepping technique. In addition, on the basis of the Lyapunov stability theory and the fixed-time criterion, it is proved that the predefined performance of full-state errors and the stability of closed-loop systems can be guaranteed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed control scheme.  相似文献   

18.
This article is concerned with the adaptive output-feedback control of switched nonstrict feedback nonlinear systems. By introducing a novel error surface, an adaptive control strategy is proposed for the general case where the nonlinear functions and the control gain functions are unknown, and the states are unmeasurable. The considered switched nonlinear system contains unknown actuator failures, which are modeled as both loss of effectiveness and lock-in-place. In order to improve the transient performance in the presence of unknown actuator failures, the prescribed performance approach is used. The “explosion of complexity” problem is avoided through using low-pass filters. The stability of the closed-loop system under arbitrary switching is shown using Lyapunov stability theory, based on which, the tracking error is shown to converge to a small residual set with the prescribed performance bounds. The advantages of the proposed technique are verified through simulations of two numerical and practical examples.  相似文献   

19.
This paper considers the problem of adaptive fuzzy output‐feedback tracking control for a class of switched stochastic nonlinear systems in pure‐feedback form. Unknown nonlinear functions and unmeasurable states are taken into account. Fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy observer is designed to estimate the immeasurable states. Based on these methods, an adaptive fuzzy output‐feedback control scheme is developed by combining the backstepping recursive design technique and the common Lyapunov function approach. It is shown that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded in mean square in the sense of probability, and the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing appropriate parameters. Finally, a simulation result is provided to show the effectiveness of the proposed control method.  相似文献   

20.
This article develops an approximation-based fuzzy control scheme for nonstrict feedback stochastic nonlinear systems (NFSNS) with time-varying state constraints. The difficulty in constructing controller is how to conquer the algebraic loop problem caused by nonstrict feedback structure, as well as prevent the state constraints from violating. To dispose the time-varying state constraints, time-varying barrier Lyapunov function is incorporated into the backstepping design framework. The lumped uncertainties of NFSNS are approximated by the fuzzy logic systems. By virtue of fuzzy basis function, the algebraic loop problem is effectively handled. Theoretical analysis shows that the predefined state constraints are not violated and all signals of the closed-loop systems are bounded. Finally, simulation results substantiate the validity of the devised method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号