首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The concentration of easily assimilable organic carbon (AOC) as determined with growth measurements using wo bacterial cultures, increased linearly with ozone dosage at values below 1 mg O3/mg of C. Moreover, a linear relationship was found between AOC increase and the decrease of UV absorbance of water after ozonation with various dosages. Biological filtration in water treatment reduced AOC concentrations, but the remaining values were above the AOC concentration before ozonation. This AOC removal was attended with an increased colony count in the filtrate. The AOC concentration of drinking water produced by the application of ozone in water treatment decreased during distribution. The greatest decrease was observed with the highest AOC concentration. Also in this situation, the highest colony counts were found. To date, ozonation is applied in seven water treatment plants in the Netherlands.  相似文献   

2.
The effect of membrane filtration, ozonation, and combined ozonation-membrane filtration on the removal of Escherichia coli was studied. Commercially available ceramic membranes with a molecular weight cutoff (MWCO) of 5kDa were used as is, and also coated with iron oxide nanoparticles and sintered at 900°C. With membrane filtration and ozonation-membrane filtration using the uncoated membrane, 7 log removal of E. coli was achieved, as compared to 7.5 log removal with ozonation-membrane filtration with the coated membrane. A Live-Dead assay indicated that the mortality of E. coli in the product water was 15%, ~50%, ~86%, and >99% with membrane filtration, ozonation, combined ozonation-membrane filtration with the uncoated membrane and the coated membrane, respectively. With the coated membrane, the concentration of assimilated organic carbon (AOC) was reduced by up to 50% more than with the uncoated membrane filtration (with both systems operated using ozone). This indicates that there is a reduced potential for regrowth after treatment using the coated membranes and ozone. Scanning electron micrographs (SEM) of the membrane surface suggest that after filtration there is less detritus on the surface of the coated membrane than on the uncoated membrane. As a result of the inactivation of the E. coli and the lower AOC concentrations observed using combined catalytic ozonation-membrane filtration this process is likely to be very effective to both disinfect the water and control bacterial regrowth in the distribution system.  相似文献   

3.
The effects of applying ozone into the source water of Cheng-Ching Lake Water Works (CCLWW) on the analysis of AOC (assimilable organic carbon) were compared in the laboratory and pilot-scale tests. CCLWW takes its raw water from an eutrophic lake. A pilot plant, established in CCLWW in southern Taiwan, was performed to improve the quality of water obtained by the former treatment processes. The direct application of ozone to the source water of CCLWW is called the pre-O3 process. The post-O3 process involves the treatment of effluent with ozone through a sand filter, following other treatments, including pre-O3, coagulation and sedimentation. In a laboratory test, a 0.45 μm membrane filter was used to replace the facility of filtration for a sand filter. AOCTotal comprises AOCP17 and AOCNOX, which were determined using the P. fluorescens strain P17 and the Spirillum species strain NOX, respectively. During over 2 years' sampling in eutrophic lake, it revealed that AOCP17 contributed substantially to AOCTotal. However, the filtrate from the source water obtained by filtering through a 0.45 μm membrane filter had an AOCTotal much lower than that of the source water, especially for the considerable decrease of AOCP17. Also, the AOC value in source water is increased with algae number but not with NPDOC (non-purgeable dissolved organic carbon). This result indicated that algae numbers existing in the eutrophic lake might affect the analysis of AOC. Following the pre-O3 process at the pilot-scale plant, the AOCP17 was markedly lower than that of the source water, and AOCNOX was slightly higher than that of the source water. However, when post-O3 was added to the effluent from a sand filter at the pilot-scale plant, AOCNOX exceeded that before post-O3, while AOCP17 differed slightly from that before post-O3. Apparently, this difference may be due to the algae number existing in the water samples. These results were verified by applying ozone to the source water, and to filtrate obtained by filtering through a 0.45 μm membrane filter in a lab-scale test, respectively.  相似文献   

4.
The degradation of 3‐methylpyridine (3MEP), a model heterocyclic industrial molecule, was performed in a sequential batch ozonation–biofilm process. Four process steps (bubble‐column ozonation, heterotrophic biofilm degradation, biofilm nitrification, and biofilm denitrification) were combined in different sequences. Three packed‐bed biofilm reactors were started up so as to have separate, specific activities (heterotrophic, nitrification and denitrification). Batch experiments with acetate, ammonia, and nitrate proved that all reactors displayed degradation activity for all substances. Different batch sequences of these reactors were tested with the products of batch ozonation of 3MEP as the first step. The best results were obtained using a two‐step process, in which the ozonation was followed by a single fluidized‐bed, heterotrophic biofilm reactor. The high C/N ratio of 3MEP and the appreciable non‐specific activity of this reactor made it possible to achieve all the biodegradation in the one reactor. Establishing the optimal batch ozonation time (80 min) was determined by an ozone electrode and by stopping the process when the dissolved ozone concentration rose above an initial low level. The identifiable products of 3MEP ozonation were nitrate, acetate, formate, pyruvate, oxalate and ammonium. A C‐balance, compared with TOC measurement, indicated that about 50% of the carbon was in unidentified, but biogradable, ozonation products. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Organic acids are part of assimilable organic carbon (AOC) formed from natural organic matter (NOM) during ozonation for drinking water production. To elucidate the formation of organic acids, phenol as surrogate compound for NOM was ozonated while suppressing reactions of ·OH radicals by addition of tert-butanol. Batch experiments show benzoquinone (40 and 18%), catechol (33 and 1%), cis,cis-muconic acid (6 and 3%), and hydroquinone (2 and 7%) to be the most abundant primary products at pH 7 and 3, respectively. The tertiary product oxalic acid was obtained in similar yields from phenol ozonation (0.8%) as during ozonation of lake water (1.6%). Together with other low molecular weight organic acids it was formed upon small ozone exposures, as was shown by time-dependent experiments in time ranges of 0.4–23 and 0.07–1.0 seconds for pH 3 and 7.25, respectively.  相似文献   

6.
This paper presents experimental results of the catalytic ozonation of Songhua River water in the presence of nano-TiO2 supported on Zeolite. The removal efficiency of TOC and UV254, the variation of AOC and molecular weight distribution of organics was studied. Results showed that TOC and UV254 removal efficiency by ozone was improved in the presence of TiO2/Zeolite, and increased by 20% and 25%, respectively. The part of organic compounds less than 1000 Da increased in ozonation, but decreased in catalytic ozonation. The AOC of water increased in catalytic ozonation, and the increase of AOC was particularly obvious when ozone dose increased from 28.8 mg·L?1 to 46.6 mg·L?1. The degradation and transformation of organic compounds was analyzed by means of GC-MS. The total number of organic compounds was reduced from 50 in the untreated water to 36 and 20, respectively, in ozonation and catalytic ozonation. The removal efficiency of the total organic compounds peak area in ozonation and catalytic ozonation were 23.5% and 62.5%, respectively. Most of the hydrocarbons could be removed easily in ozonation and catalytic ozonation. The organic compounds having hydroxyl, carboxyl or carbonyl groups were hard to be removed in ozonation, but could be removed efficiently in the presence of TiO2/Zeolite.  相似文献   

7.
The effects of ozonation on assimilable organic carbon (AOC) content of humic groundwater were investigated in batch experiments on three different groundwaters used as drinking water in Finland. All water samples had quite high concentrations of iron (range 2–10 mg/L) and manganese (range 0.1–0.2 mg/L) and therefore combined ozonation and filtration is a possible water purification method. The ozone dosage used varied from 0 to 16.6 mgO3/L (ΔO3/TOC?=?0–1.6). The ozone treatment increased the AOC concentration in the groundwater samples to different degrees. For example, an ozone dose of 3.9 mg/L increased the AOC concentration in different water as follows: from 49 μg/L to 55/L, from 7 μg/L to 119 μg/L and from 23 μg/L to 226 μg/L.  相似文献   

8.
Pilot-plant studies were conducted in two source waters to determine the effects of predisinfection with ozone alone and with a combination of hydrogen peroxide and ozone (PEROXONE) on the production of assimilable organic carbon (AOC) compounds. Colorado River water (CRW) and State project water (SPW) from Northern California were treated with ozone alone at applied dosages ranging from 1 to 4 mg/L and with PEROXONE at hydrogen peroxide/ozone (H2O2/O3) ratios of 0.05, 0.10, 0.20, and 0.30. Ozonation of CRW with applied dosages of 1.0,2.0, and 4.0 mg/L increased AOC concentrations from 70μg C/L to 275, 350, and 224 μg C/L, respectively. Ozonation of SPW with an applied dosage of 4.0 mg/L elevated AOC concentrations from 70 to 522μg C/L.  相似文献   

9.
This study investigated the formation of aldehydes after ozonation of three real and three model waters reconstituted from hydrophobic organic material. The four main aldehyde species formaldehyde, acetaldehyde, glyoxal, and methyl glyoxal were analyzed. Formaldehyde was the dominant species formed as a result of ozonation. The different waters varied greatly with respect to aldehyde production under similar treatment conditions. Studies conducted with model waters allowed for exploring aldehyde formation as a function of various water quality parameters. Overall, the hydrophobic organic extracts appeared to have greater aldehyde formation potential than the hydrophilic organics. Aldehydes were formed in direct proportion to the total organic carbon (TOC) concentration of the water at a 1:1 ozone-to-TOC ratio. Greater aldehyde formation was observed at lower ozonation pH values. Bromide ion and inorganic carbon added to model waters appeared to have no effect on aldehyde production. Finally, Assimilable Organic Carbon (AOC) measurements exhibited a strong correlation between aldehyde production and AOC production.  相似文献   

10.
Ozonation of a real red‐meat‐processing wastewater was conducted in a semi‐batch reactor to explore the possibility of the water reuse. The experimental results revealed that ozone was very effective in disinfection of the red‐meat‐processing wastewater. After 8 min of ozonation with an applied ozone dose of 23.09 mg min?1 liter?1 of wastewater, 99% of aerobic bacteria, total coliforms and Escherichia coli were inactivated. Empirical models were developed to predict the microbial inactivation efficacy of ozone from the CT values for the real red‐meat‐processing wastewater. A correlation was also derived to estimate the CT values from the applied ozone dose and the ozone contact time. The results also revealed that under the ozonation condition for 99% inactivation of aerobic bacteria, total coliforms and E coli, the decrease in the chemical oxygen demand and the 5‐day biological oxygen demand of the wastewater were 10.7% and 23.6%, respectively. However, ozonation under this condition neither improved the light transmission nor reduced the total suspended solids (TSS) despite of the decolorization of the wastewater after ozonation. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
Impacts of ozonation followed by biological filtration on the formation of disinfection byproducts and the production of biologically stable water were studied on pilot plant and full-scale at two U.S. locations (Oakland, CA and Tampa, FL). Also evaluated is a method to estimate bacterial regrowth potential by comparing it to assimilable organic carbon (AOC) measurements. At both locations, settled plant water is diverted to the pilot plant where it is split into two parallel trains. One train is ozonated, then Filtered through anthracite/sand dual media followed by GAC or through a GAC/sand dual media filter. The other train (control) is identical except that the water is not ozonated. The full scale plants have sedimentation, ozonation, then GAC/sand filtration.  相似文献   

12.
《分离科学与技术》2012,47(7):1433-1446
Abstract

Several applications of ozonation were examined in this study for:
  1. the treatment of stabilized high strength municipal landfill leachates,

  2. the reclamation potential and toxicity reduction of municipal secondary effluents, and

  3. the removal potential of phytoplanktons from surface waters.

The major parameters examined were the applied ozone dosage and the respective contact time. The application of single ozonation on leachates resulted in the efficient removal of color and organic loading, due to the respective oxidation, induced by ozonation. In addition, ozonation was found to be effective for the removal of the residual organic content of secondary municipal effluents. However, acute toxic effects after ozonation were observed on V. fischeri and were related to ozone concentration and contact time. Furthermore, the surface water used for drinking water production, was subjected to ozonation treatment for the removal of harmful cyanobacteria. Ozonation resulted in the reduction of the number of cyanobacteria species and in the breakage of the chain‐type species to cells with a lower number of atoms.  相似文献   

13.
This study was undertaken to devise an innovative method for optimization and control of ozone dosage in drinking water ozonation treatment plants. The method is based upon a specifically-conceived analytical procedure, which can accurately measure the ozone decomposition rate. This was found to consist of two apparent phases: an instantaneous ozone demand (ID) phase and a relatively slower ozone decay (pseudo first-order rate constant, kc) phase. Those parameters, ID and kc were measured in a demonstration plant by the testing procedure in order to characterize raw water and process water, and utilized an Automatic Ozone Control Unit (ACU) to optimize preozonation (with parameter, ID) and postozonation (with parameter, kc).  相似文献   

14.
The change of the bacterial population after each water treatment process was examined in a full-scale water treatment plant that uses ozone as a primary disinfectant. The fluctuation of heterotrophic bacterial number along the water treatment processes was determined. After ozonation, the bacterial number decreased to 13 CFU/mL. The surviving bacteria after each water treatment process were identified to genus or species level. The significant finding was the predominance of double-layered gram-positives (75%) among the surviving bacteria after ozonation. It included Mycobacterium spp., Bacillus spp., Corynebacterium spp., and Micrococcus spp. On the other hand, the dominance of gram-negatives was observed in most other water samples but each treatment process exerted different selection on dominant bacterial groups. The proportion of opportunistic pathogens was the lowest in the ozonated water.  相似文献   

15.
The ozonation of 2-methylisoborneol (MIB) and geosmin was investigated in both pure and raw water. In a semi-batch reactor, a series of experiments was performed to determine the effect of pH on the ozonation of MIB and geosmin. The results show that pH has a significant effect on the ozonation of both compounds, which supports the theory that OH radical plays an important role on the destruction of MIB and geosmin. Compared with MIB, geosmin is more readily destroyed by ozonation. The ozonation kinetics follow approximately a first-order equation with respect to MIB and geosmin at the pH of 5, 7 and 9, and their rate orders of CO3 at pH 7 are 0.44 and 0.61, respectively. Ozonation of organic matters in the water decreases the ozone concentration leading to a lower removal of MIB and geosmin; at the same time, the formation of OH radical initiated by the organic matters accelerates the ozonation of MIB and geosmin. The ozonation of MIB and geosmin spiked in raw water, settled water and pure water shows that background organics have no significant effect on the removal of MIB and geosmin; hence, the simplified rate equations acquired in pure water may have potential application in real water.  相似文献   

16.
Methyl-tert-butylether (MTBE) is attracting more and more attention since it was discovered in groundwater and other raw water sources for waterworks and proved to difficult to remove during conventional treatment steps in drinking water production. Therefore advanced treatment processes have to be evaluated in addition to established treatment technologies. Laboratory based experiments were carried out studying ozonation with varying ozone concentrations at different pH values. For the elimination of MTBE the degradation through hydroxyl radicals was identified as the main degradation pathway. No decline of MTBE concentration occurred in experiments with molecular ozone, but AOP (Advanced Oxidation Processes) experiments where hydrogen peroxide (H2O2) was added showed a more efficient elimination. However, no complete mineralization was achieved — tert-butyl alcohol (tBA) and tert-butyl formate (tBF) were identified as metabolites. In natural waters (i.e., groundwater, bank filtrated water, and drinking water) the efficiency of MTBE removal was strongly dependent on the content of natural organic matter and alkalinity because of their scavenging characteristics. However, bromate formation was observed as well and could cause problems for drinking water production. Comparison with data gained from waterworks showed that conventional ozonation techniques as applied in waterworks are not able to remove MTBE efficiently.  相似文献   

17.
In this study, gaseous ozone was used as a fungicide to preserve stored wheat. The following operating parameters were investigated for their effects on the fungicidal efficacy of ozone: (1) the applied ozone dose; (2) ozonation time; (3) water activity of the wheat; and (4) temperature of the wheat. The effect of ozonation on germination of the wheat was also studied. Experimental results revealed that gaseous ozone was very effective in the inactivation of fungi associated with the wheat. Within 5 min of ozonation, 96.9% of the fungal spores were inactivated by applying 0.33 mg of ozone (g wheat)?1 min?1. It was also found that increases in both water activity and temperature of the wheat enhanced the fungicidal efficacy of ozone. In addition, results of this study indicated that the inactivation processes could be controlled by simply monitoring the ozone exiting from the reactor and, consequently, the time‐consuming microbial examination processes could be avoided. This finding would make the application of ozone in the preservation of cereal grains easier, simpler, and more cost‐effective. It was also found that although the applied ozone doses above certain thresholds may reduce the germination of wheat, the inactivation of fungi could be achieved using applied ozone doses far below those thresholds. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
Ozonation of the commercially important, recalcitrant reactive dye intermediate 2‐naphthylamine 3,6,8‐trisulphonic acid (K‐Acid) was investigated. Ozonation performance was examined by following ozone absorption rates and K‐Acid, chemical oxygen demand and total organic carbon removals. Mean oxidation states and unidentified organic products were also determined. At pH 3, where direct ozone reactions are dominant, the second‐order rate constant between K‐Acid and molecular ozone was determined as 20 m ?1 s?1 for steady‐state aqueous ozone concentration. The competition kinetics approach was also adopted where a reference compound, phenol, and K‐Acid were subjected to ozonation. By applying this method, the second‐order reaction rate constant was found to be 76 m ?1 s?1. Common oxidation products formed during ozonation at pH 3, pH 7 and pH 7 with 1 mm hydrogen peroxide were identified as methoxy‐phenyl‐oxime, phenol, benzene, benzaldehyde and oxalic acid via high‐performance liquid chromatography and gas chromatography/mass spectrometry analyses. Continuous nitrate and sulphate evolution were observed during K‐Acid ozonation as a consequence of the abrupt release and subsequent oxidation of its amino and sulphonate groups. The number and amount of reaction products were most intensive for K‐Acid ozonation at pH 7 with 1 mm hydrogen peroxide. According to the acute toxicity tests conducted with Vibrio fischeri, ozonation products were not less toxic than the original K‐Acid solution that caused only 15% inhibition.  相似文献   

19.
The use of ozone for the remediation of nuisance odorous chemicals in liquid swine manure slurry was investigated. Gaseous ozone was bubbled directly into stored swine manure slurry in a continuously stirred batch reactor. One‐liter samples of swine slurry were ozonated to achieve ozone dosages of 1.0, 2.0 and 3.0 g ozone/liter of waste. Olfactometric determinations demonstrated a significant reduction in odors in ozonated samples as compared to raw and oxygenated samples. Volatile fatty acids, nitrate, phosphate and ammonia concentrations were unchanged by ozonation. The biochemical oxygen demand (BOD) and the chemical oxygen demand (COD) were essentially unaffected by ozonation. The concentrations of odorous phenolic microbial metabolites (e.g., phenol, p‐cresol and p‐ethylphenol) and odorous indolic microbial metabolites (e.g., 3‐methylindole and indole) were reduced to non‐detectable levels by ozonation. Hydrogen sulfide concentrations were reduced slightly by the process, with a concurrent increase in the sulfate concentration. E. coli counts were reduced by a factor of three log units and total coliforms showed a one log decrease in concentration after treatment with ozone at 1.0 g/L.

The results of this study demonstrate clearly that at the pH values studied (ca. 7), ozonation is effective for the elimination of the malodors associated with stored swine slurry and for killing potentially pathogenic bacteria, without increasing the concentrations of major pollutants of current concern, (i.e., nitrate and phosphate) and without oxidizing ammonia, which is a major plant nutrient.  相似文献   


20.
A novel catalyst for the ozonation process was prepared by loading manganese on the granular activated carbon (GAC). Nitrobenzene was used as a model refractory organic micropollutant in this study. The catalytic activity of GAC and the Mn-loaded GAC were studied respectively. The removal efficiency of nitrobenzene by Mn-loaded GAC catalyzed ozonation could reach 34.2–49.9%, with the oxidation efficiency being about 1.5–2.0 times higher than that achieved in GAC catalyzed ozonation and 2.0–3.0 times higher than that achieved by ozonation alone. The effect of pH and the t -butanol on the GAC/ozone process was discussed. The optimum condition for preparing the catalyst was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号