首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
通过调节配合比设计制备了多种粉煤灰混凝土,系统研究了粉煤灰掺量、种类、水胶比和养护龄期对混凝土抗碳化性能的影响。结果表明:混凝土碳化深度值和碳化速率均随粉煤灰掺量增加而增加,碳化120 d后W35F60的碳化深度值约为W35F0的7倍;混凝土碳化深度值随水胶比增加而增大,当粉煤灰掺量为40%时,混凝土最佳水胶比为0.30,其120 d碳化深度值仅11.28 mm;混凝土抗碳化性能:Ⅱ级粉煤灰Ⅰ级粉煤灰;养护龄期越长,混凝土抗碳化性能越强,当养护龄期为90 d时,混凝土碳化深度值是养护龄期28 d的79.47%。  相似文献   

2.
掺粉煤灰混凝土的抗氯离子渗透性试验研究   总被引:2,自引:0,他引:2  
本文对不同水胶比、不同粉煤灰掺量下的混凝土,利用ASTM C1202试验方法,测定了在标准养护条件下14d、28d和90d的6h电通量值。结果表明,标准养护28d时,适当粉煤灰掺量下,低水胶比的混凝土比高水胶比的混凝土具有更好的抗氯离子渗透性能;水胶比0.5以上时,水化早期随着粉煤灰掺量的增加混凝土电通量增加,水化后期则随着粉煤灰掺量的增加电通量急剧下降;0.35以下水胶比的混凝土氯离子抗渗透性能高于0.5以上水胶比的混凝土,且掺粉煤灰混凝土更适合采用长龄期的电通量来评价混凝土的抗氯离子渗透性能。  相似文献   

3.
为了得到保证混凝土碳化耐久性前提下,在0.36~0.60范围内各水胶比(mW/mB)混凝土的临界粉煤灰掺量(wFA,c),在CO2体积分数(20±3)%,温度(20±2)℃,相对湿度(70±5)%的条件下进行加速碳化试验,测试了水胶比0.36,0.43,0.50,粉煤灰掺量(wFA)0%,20%,40%,60%以及水胶比0.60,粉煤灰掺量0%的混凝土碳化深度,混凝土试件经7d自然养护,自然养护期间日均气温为12.8℃.定量分析了水胶比与粉煤灰掺量对混凝土碳化性能的影响规律,建立了20mm碳化深度下混凝土临界粉煤灰掺量与水胶比之间关系的数学模型.结果表明:在各水胶比条件下,混凝土碳化深度均随粉煤灰掺量的增加而增大,当粉煤灰掺量超过20%以后,混凝土碳化速率均明显提高;混凝土碳化耐久性随水胶比增大而加速劣化.20mm碳化深度下混凝土临界粉煤灰掺量与水胶比之间关系的数学模型为:wFA,c=174.8-280.9mW/mB.根据该数学模型,在给定的水胶比条件下能计算出确保混凝土碳化耐久性的临界粉煤灰掺量.  相似文献   

4.
设计了单掺粉煤灰、矿粉、石灰石粉、双掺粉煤灰矿粉、双掺粉煤灰石灰石粉5个系列的自密实混凝土试件,通过不同养护龄期的快速碳化试验研究不同矿物掺合料对自密实混凝土抗碳化性能的影响,并与普通混凝土抗碳化性能做对比。结果表明:养护龄期98 d左右,单掺矿粉的自密实混凝土抗碳化性能最好;养护龄期超过98 d的矿物掺合料自密实混凝土碳化深度逐渐增大;单掺石灰石粉自密实混凝土,其碳化深度值受养护龄期影响不大;矿物掺合料自密实混凝土等量取代水泥是有优势的。  相似文献   

5.
本文研究了自然条件下,不同膨胀剂掺量对大掺量粉煤灰混凝土抗碳化性能的影响,并研究了早期养护时间对大掺量粉煤灰混凝土抗碳化性能的影响。结果表明,在自然碳化条件下,70d龄期之前,碳化深度增长较快,而后随着龄期的逐渐延长,碳化速率逐渐变缓,180d到360d龄期之间,碳化深度已出现下降趋势;适量的HCSA膨胀剂对大掺量粉煤灰混凝土的早期抗碳化能力的改善有一定的作用;与未掺加膨胀剂的大掺量粉煤灰混凝土相比,6%HCSA膨胀剂掺量的混凝土抗碳化能力最好,8%的次之;对于大掺量粉煤灰混凝土7d的湿养护是必要的。  相似文献   

6.
《广东建材》2021,37(7)
本文主要研究粉煤灰掺量、养护条件对不同强度等级混凝土力学性能与抗碳化性能的影响,混凝土强度等级采用C30、C40、C50,粉煤灰掺量为0%、10%、20%、30%,水胶比为0.46、0.38、0.34,养护方式为标准养护、自然养护。试验结果表明:粉煤灰在相同或不同条件养护下,粉煤灰掺量都不宜超过20%;粉煤灰混凝土的抗碳化性能随水胶比的降低而减少;标准养护下粉煤灰混凝土的碳化深度低于自然养护条件。  相似文献   

7.
陈晨  卫海  彭涛  郭樟根 《江苏建筑》2021,(z1):118-121,124
文章研究制备了不同水胶比、再生粗骨料取代率、矿物掺和料取代(水泥)率的低碳自密实再生混凝土试块,通过快速碳化试验,对低碳自密实再生混凝土的碳化性能进行研究.试验结果表明:当水胶比大于0.4,对碳化性能的不利影响较明显;粉煤灰对混凝土碳化性能的影响具有正反两面,合适的掺量能发挥最佳碳化性能;当再生粗骨料取代率为50%,以及采用三掺粉煤灰、矿粉、硅灰,均能发挥最佳的碳化性能;通过不同养护环境的对比,发现其对混凝土的碳化性能影响较显著.  相似文献   

8.
基于混凝土碳化机理,就粉煤灰掺量、水胶比的变化、激发剂的引入和长期养护等方面,研究了大掺量粉煤灰高性能混凝土碳化深度.并结合大掺量粉煤灰高性能混凝土抗压强度发展特点,对试验结果进行分析和比较,得出一些参考性结论.  相似文献   

9.
不同水胶比下粉煤灰混凝土抗氯盐及碳化腐蚀性能研究   总被引:1,自引:0,他引:1  
通过加速碳化试验及快速氯离子渗透试验(RCPT)研究了不同水胶比和不同粉煤灰掺量下混凝土的抗氯盐及碳化腐蚀性能.结果表明:粉煤灰对混凝土抗氯盐和碳化的性能影响机制明显不同.氯盐破坏情形,不论水胶比水平在0.5以上或0.35以下,粉煤灰的掺入对于改善混凝土抗氯离子侵蚀性能皆有明显效果;且水化中后期,火山灰效应的发挥逐渐赶...  相似文献   

10.
采用快速碳化试验对C40泵送混凝土抗碳化能力随早期保湿养护时间和矿渣掺量的变化规律进行了试验研究.结果表间,混凝土抗碳化能力随着早期保湿养护时间的减少和矿渣掺量的增加而明显降低.在早期保湿养护时间分别为28、7、3、2、1d再干养护到28d条件下,矿渣掺量为30%混凝土的28 d快速碳化深度分别为8.2、10.5、16.1、20.3、25.8 mm,由此可推算得到自然碳化(空气中CO2浓度以0.04%计)达到保护层厚度(25 mm)所需时间分别为356.5、217.4、92.5、58.2、39.0a.因此,对于矿渣掺量达到30%~50%的混凝土,早期7d保湿养护是必要的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号