首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High quality, well-separated, homogeneous sizes and high aspect ratio Si-doped InN nanowires (NWs) were grown by catalyst-free molecular beam epitaxy (MBE) after optimization of the growth conditions. To this end, statistical analysis of NW density and size distribution was performed. The high crystal quality and smooth NW surfaces were observed by high resolution transmission electron microscopy. Spectral photoluminescence has shown the increase of the band filling effect with Si flux, indicating successful n-type doping. A Raman LO scattering mode appears with a pronounced low energy tail, also reported for highly doped InN films.  相似文献   

2.
Well-dispersed and uniform needle-like tellurium nanowires (NWs) have been fabricated in high yield by an environmentally-friendly hydrothermal method. It is found that beta-cyclodextrin ligands and reaction temperature play a great role on the morphology of Te NWs. Uniform needle-like Te NWs can only be obtained at suitable concentration of beta-CD and reaction temperature. A possible mechanism for the formation of the needle-liked Te NWs is discussed based on the experiment results briefly. High quality single Te NW field effect transistors are prepared through photolithographic patterning. By optimizing electrode and surface treatments, the NW FET has a high carrier mobility of 299 cm2V(-1)s(-1), which is the highest value ever reported for Te NW-based FETs. The performance is influenced by purity, crystallinity, surface species of NWs and metal contacts of NW device.  相似文献   

3.
Chen RS  Yang TH  Chen HY  Chen LC  Chen KH  Yang YJ  Su CH  Lin CR 《Nanotechnology》2011,22(42):425702
The photoconduction (PC) mechanism in indium nitride (InN) nanowires (NWs) has been investigated via environment-, temperature-, and power-dependent measurements. The adsorbed oxygen-induced modulation of the surface state is proposed to be the leading factor in the long lifetime or high gain transport and in sensitizing photocurrent generation in the InN NWs. The electron trapping effect by adsorbed oxygen can be verified by the increased activation energy from 33 ± 4 (in vacuum) to 58 ± 2 meV (in oxygen). The observed supralinear power dependence of photocurrent also suggests the presence of acceptor states that influence the carrier recombination behavior and compensate the thermal carriers in the InN NWs. The potential influence of native oxide on the molecule-sensitive PC in this nitride nanomaterial is also inferred.  相似文献   

4.
Yuan GD  Zhang WJ  Jie JS  Fan X  Zapien JA  Leung YH  Luo LB  Wang PF  Lee CS  Lee ST 《Nano letters》2008,8(8):2591-2597
Well-aligned ZnO nanowire (NW) arrays with durable and reproducible p-type conductivity were synthesized on alpha-sapphire substrates by using N2O as a dopant source via vapor-liquid-solid growth. The nitrogen-doped ZnO NWs are single-crystalline and grown predominantly along the [110] direction, in contrast to the [001] direction of undoped ZnO NWs. Electrical transport measurements reveal that the nondoped ZnO NWs exhibit n-type conductivity, whereas the nitrogen-doped ZnO NWs show compensated highly resistive n-type and finally p-type conductivity upon increasing N2O ratio in the reaction atmosphere. The electrical properties of p-type ZnO NWs are stable and reproducible with a hole concentration of (1-2) x 10(18) cm(-3) and a field-effect mobility of 10-17 cm2 V(-2) s(-1). Surface adsorptions have a significant effect on the transport properties of NWs. Temperature-dependent PL spectra of N-doped ZnO NWs show acceptor-bound-exciton emission, which corroborates the p-type conductivity. The realization of p-type ZnO NWs with durable and controlled transport properties is important for fabrication of nanoscale electronic and optoelectronic devices.  相似文献   

5.
We examine the impact of shell content and the associated hole confinement on carrier transport in Ge-Si(x)Ge(1-x) core-shell nanowires (NWs). Using NWs with different Si(x)Ge(1-x) shell compositions (x = 0.5 and 0.7), we fabricate NW field-effect transistors (FETs) with highly doped source/drain and examine their characteristics dependence on shell content. The results demonstrate a 2-fold higher mobility at room temperature, and a 3-fold higher mobility at 77K in the NW FETs with higher (x = 0.7) Si shell content by comparison to those with lower (x = 0.5) Si shell content. Moreover, the carrier mobility shows a stronger temperature dependence in Ge-Si(x)Ge(1-x) core-shell NWs with high Si content, indicating a reduced charge impurity scattering. The results establish that carrier confinement plays a key role in realizing high mobility core-shell NW FETs.  相似文献   

6.
A quantitative metal-semiconductor-metal (MSM) model and a Matlab based program have been developed and used to obtain parameters that are important for characterizing semiconductor nanowires (NWs), nanotubes (NTs) or nanoribbons (NRs). The use of the MSM model for quantitative analysis of nonlinear current-voltage curves of one-dimensional semiconducting nanostructures is illustrated by working through two examples, i.e., an amorphous carbon NT and a ZnO NW, and the obtained parameters include the carrier density, mobility, resistance of the NT(NW), and the heights of the two Schottky barriers formed at the interfaces between metal electrodes and semiconducting NT(NW).  相似文献   

7.
The high electron mobility has granted indium arsenide(InAs) nanowires(NWs) as an important class of nanomaterials for high performance electronics such as field-effect transistors(FETs).We reviewed recent progresses on the studies of quantum coherence,gate tunable one-dimensional(1D) confinement and spin orbit interaction(SOI) in InAs NW based electronic and thermoelectric transport devices.We also demonstrated gas sensing response of InAs NW FETs and elucidated the mechanism via a gating experiment.By using InAs NWs as an example,these fundamental transport studies have shed important lights on the potential thermoelectric,spintronic and gas sensing applications of semiconductor NWs where the 1D confinement,SOI or surface states effects are exploited.  相似文献   

8.
Han N  Wang F  Hui AT  Hou JJ  Shan G  Xiu F  Hung T  Ho JC 《Nanotechnology》2011,22(28):285607
GaAs nanowires (NWs) have been extensively explored for next generation electronics, photonics and photovoltaics due to their direct bandgap and excellent carrier mobility. Typically, these NWs are grown epitaxially on crystalline substrates, which could limit potential applications requiring high growth yield to be printable or transferable on amorphous and flexible substrates. Here, utilizing Ni as a catalytic seed, we successfully demonstrate the synthesis of highly crystalline, stoichiometric and dense GaAs NWs on amorphous SiO(2) substrates. Notably, the NWs are found to grow via the vapor-solid-solid (VSS) mechanism with non-spherical NiGa catalytic tips and low defect densities while exhibiting a narrow distribution of diameter (21.0 ± 3.9 nm) uniformly along the entire length of the NW (>10 μm). The NWs are then configured into field-effect transistors showing impressive electrical characteristics with I(ON)/I(OFF) > 10(3), which further demonstrates the purity and crystal quality of NWs obtained with this simple synthesis technique, compared to the conventional MBE or MOCVD grown GaAs NWs.  相似文献   

9.
Zinc metal nanowires (NWs) of two different morphologies have been synthesized in a cold-wall physical vapor deposition (CWPVD) chamber at high vacuum conditions and growth temperatures of 150 degrees C. Substrates initially seeded by gold or platinum crystals show NWs of wool-like and/or unidirectional morphologies. Transmission electron microscopy (TEM) studies revealed that the rodlike NWs consist of single-crystalline Zn covered with a thin native oxide. NWs of wool-like morphology are suppressed using platinum as the seed metal. NW growth proceeds via vapor-solid (VS) kinetics without any catalyst particles on the wire tips. The highest observed growth rates exceed the Zn deposition rate by factors up to 860, indicating the dominant role of surface diffusion of Zn adatoms, also along the NWs. The surface diffusion length of Zn adatoms on the NW side facet is determined to be 39 mum. Direct impingement of precursor atoms on the NW tip is not significant for the growth process.  相似文献   

10.
The development of a method for large-scale printing of nanowire (NW) arrays onto a desired substrate is crucial for fabricating high-performance NW-based electronics. Here, the alignment of highly ordered and dense silicon (Si) NW arrays at anisotropically etched micro-engraved structures is demonstrated using a simple evaporation process. During evaporation, entropic attraction combined with the internal flow of the NW solution induced the alignment of NWs at the corners of pre-defined structures, and the assembly characteristics of the NWs were highly dependent on the polarity of the NW solutions. After complete evaporation, the aligned NW arrays are subsequently transferred onto a flexible substrate with 95% selectivity using a direct gravure printing technique. As a proof-of-concept, flexible back-gated NW field-effect transistors (FETs) are fabricated. The fabricated FETs have an effective hole mobility of 17.1 cm(2) ·V(-1) ·s(-1) and an on/off ratio of ~2.6 × 10(5) .  相似文献   

11.
Qin D  Tao H  Zhao Y  Lan L  Chan K  Cao Y 《Nanotechnology》2008,19(35):355201
Trigonal Se nanowires (NWs) were fabricated through a high-yield chemical solution process. The morphology and structural characterization of the Se NWs were investigated using transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and x-ray diffraction (XRD). The results indicated that the Se NWs grow along the crystallographic c-axis, the direction of which is parallel to the helical chains of Se atoms. Single Se NW field effect transistor (FET) devices were prepared through photolithographic patterning. The device performance shows that the Se NWs are p-type semiconductors displaying mobility up to 30?cm(2)?V(-1)?s(-1). This finding on the Se NW FETs has broad implications and provides very useful fundamental information necessary for future applications in the fabrication of high-quality NW FETs and other electronic devices.  相似文献   

12.
Yong-Won Song 《Thin solid films》2009,518(4):1323-12426
Enhanced functionality of the nanostructure-based devices can be achieved by customizing the doping, thereby managing the electrical properties of the nanostructures. We have optimized the synthesis condition of the ZnO nanowires (NWs) using hot-walled pulsed laser deposition (HW-PLD) that features the facilitated kinetic energy control of the laser-ablated particles. The electrical properties of the NWs have been managed by doping control while maintaining the NW morphologies. 1, 3, and 5 wt.% Ga concentration in the NWs is evaluated directly with energy dispersive spectrometer (EDS), and the exciton peak shifts are measured with room temperature photoluminescence (PL) to find the correlation between the concentration and the shifts. n-type Ga-doping status has been verified with low temperature PL to find the donor-bound exciton peaks. As for the morphology diversification, we have acquired both zigzag-shaped NWs and nanohorns using the same HW-PLD.  相似文献   

13.
Cuprous oxide (Cu(2)O) and cupric oxide (CuO) nanowires have started playing important roles in energy conversion devices and optoelectronic devices. Although the desired advanced properties have been demonstrated, these materials cannot yet be produced in large-bulk quantities in order to bridge the technological transfer gap for wider use. In this respect, the quest for the most efficient synthesis process which yields not only large quantities but also high quality and advanced material properties continues. This paper gives an extensive review of copper oxide nanowire (NW) synthesis by all methods and routes by which various researchers have obtained their nanomaterial. These methods are critically overviewed, evaluated and compared. Methods of copper oxide NW growth include wet-chemical methods based on pure solution growth, electrochemical and hydrothermal routes as well as thermal and plasma oxidation methods. In terms of advanced nanowire synthesis, the fast thermal method or direct plasma oxidation as well as the combined hybrid wet-chemical method in which copper hydroxide NWs are produced and sequentially transformed by plasma oxidation which produces Cu(2)O NWs are seen as the most promising methods to explore in the near future. These methods not only yield large quantities of NWs, but produce high quality material with advanced properties.  相似文献   

14.
Single-crystal InAs nanowires (NWs) are synthesized using metal-organic chemical vapor deposition (MOCVD) and fabricated into NW field-effect transistors (NWFETs) on a SiO(2)/n(+)-Si substrate with a global n(+)-Si back-gate and sputtered SiO(x)/Au underlap top-gate. For top-gate NWFETs, we have developed a model that allows accurate estimation of characteristic NW parameters, including carrier field-effect mobility and carrier concentration by taking into account series and leakage resistances, interface state capacitance, and top-gate geometry. Both the back-gate and the top-gate NWFETs exhibit room-temperature field-effect mobility as high as 6580 cm(2) V(-1) s(-1), which is the lower-bound value without interface-capacitance correction, and is the highest mobility reported to date in any semiconductor NW.  相似文献   

15.
To correlate optical properties to structural characteristics, we developed a robust strategy for characterizing the same individual heterostructured semiconductor nanowires (NWs) by alternating low temperature micro-photoluminescence (μ-PL), low voltage scanning (transmission) electron microscopy and conventional transmission electron microscopy. The NWs used in this work were wurtzite GaAs core with zinc blende GaAsSb axial insert and AlGaAs radial shell grown by molecular beam epitaxy. The series of experiments demonstrated that high energy (200 kV) electrons are detrimental for the optical properties, whereas medium energy (5-30 kV) electrons do not affect the PL response. Thus, such medium energy electrons can be used to select NWs for correlated optical-structural studies prior to μ-PL or in NW device processing. The correlation between the three main μ-PL bands and crystal phases of different compositions, present in this heterostructure, is demonstrated for selected NWs. The positions where a NW fractures during specimen preparation can considerably affect the PL spectra of the NW. The effects of crystal-phase variations and lattice defects on the optical properties are discussed. The established strategy can be applied to other nanosized electro-optical materials, and other characterization tools can be incorporated into this routine.  相似文献   

16.
TiO2 nanowires (NWs) have been synthesized by glancing angle deposition technique using e-beam evaporator. The average length 490 nm and diameter 80 nm of NWs were examined by field emission-scanning electron microscopy. Transmission electron microscopy emphasized that the NWs were widely dispersed at the top. X-ray diffraction has been carried out on the TiO2 thin film (TF) and NW array. A small blue shift of 0.03 eV was observed in Photoluminescence (PL) main band emission for TiO2 NW as compared to TiO2 TF. The high temperature annealing at 980 degrees C partially removed the oxygen vacancy from the sample, which was investigated by PL and optical absorption measurements.  相似文献   

17.
Metallic nanocoils are attractive nanowire (NW) structures, which are expected to have an application as small inductors, but have not been reported before. This study proposes a coating technique for permanently bending a straight, metallic NW into a helix. A physical vapor deposition is applied to oblique NWs standing on a substrate. The deposition produces a biased thickness of the coating on NWs, resulting in a mismatch in internal strains, namely thermal strain and intrinsic strain, between a NW and the coating. These residual strains are driving forces for the bending process of NWs. In particular, the intrinsic strain of the overlayer contributes the bending deformation. In addition, elastic anisotropy of NWs couples bending with a twist, contributing to the formation of helixes. We have demonstrated nanocoils, comprised of Cr-coated Cu NWs, with a coil diameter of about 300 to 500 nm.  相似文献   

18.
Wu JJ  Chen GR  Lu CC  Wu WT  Chen JS 《Nanotechnology》2008,19(10):105702
TiO(2) nanowire (NW)/nanoparticle (NP) composite films have been fabricated by hybridizing various ratios of hydrothermal anatase NWs and TiO(2) NPs for use in dye-sensitized solar cells (DSSCs). Scanning electron microscopy (SEM) images reveal that uniform NW/NP composite films were formed on fluorine-doped tin oxide?(FTO) substrates by the dip-coating method. The NWs are randomly but neither vertically nor horizontally oriented within the composite film. The TiO(2) NP DSSC possesses superior performance to those of the NW/NP composite and the pure NW cells, and the efficiency of the NW/NP composite DSSC increases on increasing the NP/NW ratio in the composite anode. All types of DSSC possess the same dependence of performance on the anode thickness that the efficiency increases with the anode thickness to a maximum value, then it decreases when the anode is thickened further. Electrochemical impedance spectroscopy analyses reveal that the NP DSSCs possess larger effective electron diffusion coefficients (D(eff)) in the photoanodes and smaller diffusion resistances of I(3)(-) in electrolytes compared to those in the NW/NP and the NW DSSCs. D(eff) decreases when NWs are added into the photoanode. These results suggest that the vertical feature of the NWs within the anodes is crucial for achieving a high electron transport rate in the anode.  相似文献   

19.
Peng H  Xie C  Schoen DT  Cui Y 《Nano letters》2008,8(5):1511-1516
Layer-structured indium selenide (In 2Se 3) nanowires (NWs) have large anisotropy in both shape and bonding. In 2Se 3 NWs show two types of growth directions: [11-20] along the layers and [0001] perpendicular to the layers. We have developed a powerful technique combining high-resolution transmission electron microscopy (HRTEM) investigation with single NW electrical transport measurement, which allows us to correlate directly the electrical properties and structure of the same individual NWs. The NW devices were made directly on a 50 nm thick SiN x membrane TEM window for electrical measurements and HRTEM study. NWs with the [11-20] growth direction exhibit metallic behavior while the NWs grown along the [0001] direction show n-type semiconductive behavior. Excitingly, the conductivity anisotropy reaches 10 (3)-10 (6) at room temperature, which is 1-3 orders magnitude higher than the bulk ratio.  相似文献   

20.
Yu Y  Protasenko V  Jena D  Xing HG  Kuno M 《Nano letters》2008,8(5):1352-1357
While the polarization sensitivity of single or aligned NW ensembles is well-known, this article reports on the existence of residual photocurrent polarization sensitivities in random NW networks. In these studies, CdSe and CdTe NWs were deposited onto glass substrates and contacted with Au electrodes separated by 30-110 microm gaps. SEM and AFM images of resulting devices show isotropically distributed NWs between the electrodes. Complementary high resolution TEM micrographs reveal component NWs to be highly crystalline with diameters between 10 and 20 nm and with lengths ranging from 1 to 10 microm. When illuminated with visible (linearly polarized) light, such random NW networks exhibit significant photocurrent anisotropies rho = 0.25 (sigma = 0.04) [rho = 0.22 (sigma = 0.04)] for CdSe (CdTe) NWs. Corresponding bandwidth measurements yield device polarization sensitivities up to 100 Hz. Additional studies have investigated the effects of varying the electrode potential, gap width, and spatial excitation profile. These experiments suggest electrode orientation as the determining factor behind the polarization sensitivity of NW devices. A simple geometric model has been developed to qualitatively explain the phenomenon. The main conclusion from these studies, however, is that polarization sensitive devices can be made from random NW networks without the need to align component wires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号