首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In tropical countries where rainfall rates are high, and especially in deforested areas in the Atlantic Rainforest and Cerrado in southeastern Brazil, water is the dominant driving force of erosion. The most common method used to restore degraded tropical lands is to plant nursery-raised tree seedlings, but this method is not always practical and a variety of newer reforestation techniques have become available. Biodegradable coir geotextiles combined with native seeds can be used to restore degraded forest areas. The effects of the climatic conditions during a seasonal cycle of rain and drought were evaluated on the structural and mechanical properties of coir geotextile fibers that were treated, or not, with lime. Analyses of the tensile strength of coir fibers showed that after 12 months of exposure untreated fiber had retained 23% and treated fiber 19% of their initial strength. Two principal factors were considered in evaluating the structural properties of the coir fibers after environmental exposure: (i) initial cellulose retention and its stability after lime-treatment; (ii) lignin degradation and/or its loss to the environment. The structural changes seen by thermogravimetry (TGA) and Fourier Transforms in Infrared spectroscopy (FTIR) analyses explained the changes seen in coir mechanical properties. The greater cellulose contents of fiber structures treated with lime explained their greater tensile strength and high Young's modulus measures after the first three months of exposure in local weather conditions. Considering that lime treatment improved coir fiber properties, lime applications are indicated when coir geotextiles are to be used in acidic Brazilian Cerrado soils.  相似文献   

2.
This study examines the wetting–drying durability of soft clay soil stabilized with recycled Bassanite, produced from gypsum waste. Specifically, this study focuses on an investigation of the effects of the moisture conditions on the strength performance and durability of very soft clay soil stabilized with Bassanite and furnace cement mixtures during the wetting–drying cycles, referred to as weathering conditions in this study. Cylindrical stabilized soil specimens were produced and then cured for 28 days. The cured specimens were subjected to different numbers of wetting–drying cycles, and then tested for unconfined compressive strength. The results show that the compressive strength increased with an increase in the Bassanite content for the different wetting–drying cycles investigated. The increase in the Bassanite content is associated with the increase in the dry unit weight, as well as in the decrease in the moisture content of the stabilized specimens for the different wetting–drying cycles investigated. The compressive strength of the soil stabilized with the Bassanite and furnace cement mixtures gradually decreases with an increase in the number of wetting–drying cycles, and the earlier cycles are seen to have a more negative effect on durability than the later cycles. Generally, the influence of the wetting–drying cycles on changes in the strength, durability and volume of the soft clay soil stabilized with Bassanite and furnace cement mixtures is not significant. This is evidence that the use of recycled Bassanite, produced from gypsum waste to stabilize soft clay soil, achieves acceptable durability, raises the strength performance and improves the engineering properties of soft clay soil in a wet environment. In addition, the effective use of gypsum waste contributes to the development of a sustainable society by reducing the huge quantity of solid waste and establishing a sound environment.  相似文献   

3.
This article deals with needle-punched nonwoven geotextiles prepared from nettle and poly(lactic acid) fibers in different weight proportions for potential slope stabilization application using bioengineering approach. The geotextiles were tested for tensile strength, biodegradability, and enhancement of soil fertility. The tensile strength of the geotextiles was found to decrease with addition of stronger nettle fibers. This apparently surprising behavior was explained in the light of theoretical tensile mechanics of nonwovens. Further, the nettle fibers displayed higher biodegradability than the poly(lactic acid) fibers, and when buried under soil, all the geotextiles exhibited a loss in tensile strength. Interestingly, the fertility of the soil was remarkably improved after biodegradation of poly(lactic acid) fibers. Overall, the nonwoven geotextiles prepared in this work were found to be promising for slope stabilization application.  相似文献   

4.
A Jute-HDPE composite structured geotextile was developed to improve the performance of earthen structure of river embankment. The optimized geotextiles (430 g/m2) containing 86% natural component (on weight) having better physical, mechanical (tensile strength, 10 kN/m (machine direction) and 18 kN/m (cross direction), index puncture (163 kN) and CBR (1.5 kN)), hydraulic (AOS 178 μ) and endurance properties than 100% HDPE geotextiles. A coconut fibre geotextile net was placed over jute-polyolefin geotextiles to resist washing-off of loose cover soil until the establishment of vegetation. Placing of continuous seamless geotextile tube (weight 196.2 kg/m) filled with moist river sand at the anchor trench-cum-toe guard assisted in safeguarding from eddies. It was observed that initially closed structure of the geotextile assisted in efficient filtration leading to soil stabilization through compactness of soil layer (14 cm thick). The uniqueness of work lies in conversion of closed structure of geotextiles to open-mesh of HDPE slit film on degradation of jute, remained beneath the cover-soil, through which grass root penetrated the geotextiles sheet and riveted both the layers of soil, the cover and the compacted back layers. The remnant synthetic part thus acts as durable reinforcing element and its increased porosity provides breathability for growth of soil flora and fauna. Bermuda grass turf provided very high nailing strength (658.8 kN/m2) with the soil through intertwining of grass roots with durable synthetic network.  相似文献   

5.
毛细水干湿循环对土遗址风化影响的试验研究   总被引:1,自引:0,他引:1  
地下水位的波动引起毛细水对上部遗址体的反复作用,导致遗址体处于干湿循环交替的状态中,从而致使土遗址不断经受反复的湿胀干缩变化,使得遗址体内部发育大量的裂隙,内部结构变疏松,对遗址体造成极大的破坏,最终使遗址体抵抗外界侵蚀的能力下降,加速了土遗址的风化劣变。采用西安地区凤栖塬黄土模拟遗址原址土样进行室内干湿循环模拟试验,研究了在毛细水作用下经过多次干湿循环后,土样的外观形貌、无侧限抗压强度、抗水崩解性、微观结构的变化以及抗压强度随含水率的变化规律,结果表明:随着干湿循环次数的增加,土样的裂隙不断加以发育并相互贯通、无侧限抗压强度逐渐下降、崩解速度整体上呈现出上升的趋势、土颗粒粒径变小且空隙间距变大。  相似文献   

6.
Geosynthetics or geotextile is used for aggregate separation, soil reinforcement, filtration, drainage and moisture or liquid barriers in geotechnical applications. Because of the environmental issues, a bio-based material is introduced as a sustainable construction material. The kenaf fibre is a bio-based material available in the tropical countries. It can be potentially used as a geotextile because of its high tensile strength. This paper presents the tensile strength characteristics of kenaf geotextile, manufactured with and without sodium hydroxide (NaOH) treatment. The tensile strength of kenaf geotextile was determined by using the wide-width strip test based on the ASTM D4595-17 standard. Because the kenaf fibre has a high water absorption capability, the effect of wet and dry conditions on tensile behaviour of kenaf textile was studied. Two patterns of woven kenaf with two different opening sizes between their yarns (0 × 0 and 2 × 2 mm)—plain and incline patterns were studied. In addition, the tensile strength of the kenaf geotextiles, buried in natural ground, was examined after a one-year period. The tensile strength of kenaf geotextiles was higher for the smaller spaces between the yarns. Furthermore, the tensile strength and elongation were lower under wet condition. The alkaline treatment (6% concentration of NaOH) significantly improved the tensile strength of the woven kenaf geotextile. The tensile strength of the treated kenaf geotextile was higher than that of the untreated one, for both short and long-term conditions, showing the advantage of NaOH treatment.  相似文献   

7.
研究了不同养护条件下混凝土的强度及耐久性.结果发现,经自然条件下的高温低湿养护后,混凝土的强度早期增长较快,但后期的抗压强度与轴拉强度均低于标准养护下混凝土的试验值;在自然环境中养护时,混凝土各龄期的极限拉伸值均小于标准养护测定值,且混凝土的抗渗等级与抗冻等级均低于标准养护时混凝土的测试结果.混凝土抗渗性试验结果表明,混凝土的强度等级越低,自然养护对混凝土抗渗性带来的影响越大.  相似文献   

8.
深圳河反滤土工布试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
对深圳河治理工程边坡防护反滤运行期的土工布进行了综合试验研究 ,分析了土工布长期运行过程中的渗透性、保土性和淤堵性能 ,从强度损失角度分析了土工布长期运行的强度衰减情况 ,并对土工布的耐久性进行了试验分析。由试验知 ,土工布渗透系数降低约 10 0倍左右 ,而土工布强度降低了 5 0 %左右 ,强度衰减速率小于 0 .2 6% /月。试验表明 ,土工布已进入稳定渗透期和强度的稳定衰减期 ,土工布满足防护反滤的要求  相似文献   

9.
A simple machine has been developed at the Textile Technology Department of IIT Delhi that uses coir and jute yarns to manufacture 100% natural fibre strip drains. The machine employing braiding technology braids jute yarns to form the filter sheath and coir yarn as core. Typically the drains are about 7.5–12.5 mm thick in dry state and have a tensile strength of above 3 kN. The properties of the drain have been studied in comparison with two synthetic strip drains and another type of natural fibre strip drain. In general, the properties of this drain are found comparable with typical synthetic drains, except that for a slightly lower discharge capacity under soil confinement. An important feature of the jute yarn sheath is its swelling nature that allows it to function as filter without clogging. The present drain differs from the other natural fibre sheath drain is that it is manufactured in single machine, and has capability of varying the width, thickness and weight per linear meter to suit different soil conditions.  相似文献   

10.
This paper explores the potential use of a woven polypropylene textile for encapsulating stone columns and improving performance of a local soft soil in Warangal city of India. A series of axial load tests were performed on stone columns of various diameters and under various encapsulation conditions that include single and double layers and other combinations. Load carrying capacity of stone column increased twice its original capacity when encapsulated with different geofabric materials. Performance enhancement strongly correlated to the tensile strength of encasement material and encapsulation condition. In addition, the influence of lateral thrust on group of stone columns arranged in square and triangular patterns were investigated. Irrespective of the material used, lateral displacement reduced by half for encased stone columns. Apart from tensile strength of encasing material, the amount of material used for encasement in the form of additional encasement layer was found to be crucial. The cost of using the polypropylene encasing material is only a third of the commercial geotextiles; however, the performance is inferior to woven geotextiles but far superior to non-woven geotextiles.  相似文献   

11.
The results of an experimental study conducted to investigate the beneficial use of woven coir geotextiles as reinforcing material in a two-layer pavement section, are presented. Monotonic and repeated loads were applied on reinforced and unreinforced laboratory pavement sections through a rigid circular plate. The effects of placement position and stiffness of geotextile on the performance of reinforced sections were investigated using two base course thicknesses and two types of woven coir geotextiles. The test results indicate that the inclusion of coir geotextiles enhanced the bearing capacity of thin sections. Placement of geotextile at the interface of the subgrade and base course increased the load carrying capacity significantly at large deformations. Considerable improvement in bearing capacity was observed when coir geotextile was placed within the base course at all levels of deformations. The plastic surface deformation under repeated loading was greatly reduced by the inclusion of coir geotextiles within the base course irrespective of base course thickness. The optimum placement position of coir geotextile was found to be within the base course at a depth of one-third of the plate diameter below the surface.  相似文献   

12.
Clayey soils are stabilized with various dosages of cement kiln dust, volcanic ash and their combinations. The influence of stabilizers is evaluated through Atterberg limits, standard Proctor compaction, unconfined compressive strength, splitting tensile strength, modulus of elasticity and California bearing ratio (CBR) tests. The durability properties of 14 stabilized soil mixtures are also investigated by studying the influence of water immersion on strength, water sorptivity and drying shrinkage. Correlations between strength, modulus of elasticity and CBR are also established. Developed stabilized soil mixtures have shown satisfactory strength and durability characteristics and can be used for low-cost construction to build houses and road infrastructures. The use of stabilized soils with locally available soils, volcanic ash and cement kiln dust can provide sustainability to the local construction industry.  相似文献   

13.
The paper deals with the cementitious binders produced by blending 60–70% fly ash with fluorogypsum, hydrated lime sludge, with and without Portland cement and chemical activator in different proportions. Data show that strength development of cementitious binders takes place through formation of ettringite, C–S–H and wollastonite compounds. The durability of these binder has been studied by its performance in water and by accelerated aging i.e. alternate wetting and drying as well as by heating and cooling cycles at temperatures in the range 27–50 °C. The results indicate Lawrence of strength of binder with the increasing cyclic studies at different temperatures. The maximum fall in compressive strength was noticed at 50 °C.  相似文献   

14.
《Building and Environment》2004,39(6):677-687
The importance of long-term performance and durability of building materials and components has received increasing consideration with regard to a sustainable built environment. Degradation due to exposure to environment conditions, particularly driving rain, play a significant role in the service life of porous materials used in external wall components. Microenvironment monitoring data are presented in this paper to show how different surface coatings can contribute to moisture performance of external walls made of autoclaved aerated concrete (AAC). Renderings modified with hydrophobic products on AAC substrate prove to have less wetting and better drying properties than unmodified renderings according to the performance assessment based on the amount and duration of moisture measured in the material.  相似文献   

15.
In order to transfer stress between geotextile panels the selvage edges are mechanically seamed by sewing. In light-to-medium-strength geotextiles (geotextiles with wide width tensile strengths of up to 175 kN/m (1000lb/in) it is possible to attain up to 80% efficiency in the final seamed product. Beyond this strength range the sewn seam efficiency is drastically reduced. For applications which require the use of high-strength geotextiles (i.e. soft soil stabilization) a designer is often limited by the seam strength between panels. This paper explores the use of chemical seaming as an alternative joining technique and presents results of a preliminary investigation on the performance of an epoxy resin used to lap seam a high-strength polyester geotextile.  相似文献   

16.
The paper deals with an investigation about the production of high strength plaster from the waste phosphogypsum and its use in making flooring tiles. To achieve this objective, phosphogypsum was calcined at 900–1000 °C to anhydrite which was mixed with suitable chemical activators (alkali/alkaline earth hydroxides, sulphates, carbonates) and finely ground (>400 m2/kg Blaine's) to achieve high compressive strength (36–37 MPa). The anhydrite plaster was blended with 2–3% of predetermined quantity of a monomer methyl methacrylate (MMA) with a compatible catalyst, metalic oxide pigments, fly ash or red mud, chopped glass fibres (E-type, 12 mm long) and quartz sand to form flooring tiles by vibration moulding technique followed by high humidity curing, drying, grinding and polishing. The addition of chemical activators increase the rate of dissolution of anhydrite for rapid transformation into hard strong gypsum matrix while the MMA gets polymerised during hydration of anhydrite into polymethyl methacrylate which fills up voids and pores of hydrating anhydrite and thus improves density, strength and durability of the anhydrite plaster against water. The durability of anhydrite plaster by alternate wetting and drying and heating and cooling cycles is reported along with hydration mechanism. The use of phosphogypsum anhydrite for making high strength plaster and flooring tiles is recommended.  相似文献   

17.
This paper presents the results of an experimental investigation into the mechanical behaviour of an expansive soil during wetting and drying cycles. The experimental tests were conducted in a modified oedometer under two different surcharge pressures (10 and 20 kPa). During the tests, the samples were inundated with different types of wetting fluids (distilled water, saline water and acidic water). The volumetric deformation, void ratio and water content of the samples were determined during cycles of wetting and drying. The results show that the swelling potential increases with an increasing number of wetting and drying cycles. The effect of the distilled water on the swelling potential is not the same as that of the saline water or the acidic water, particularly for different surcharge pressures. The variations in void ratio and water content show that, at the equilibrium condition, the wetting and drying paths converge to nearly an S-shaped curve. This curve consists of a linear portion and two curved portions, and the majority of the deformation is located between the saturation curves of 90% and 40%.  相似文献   

18.
Variability in moisture content is a common condition in natural soils. It influences soil properties significantly. A comprehensive understanding of the evolution of soil microstructure in wetting/drying process is of great significance for interpretation of soil macro hydro-mechanical behavior. In this review paper, methods that are commonly used to study soil microstructure are summarized. Among them are scanning electron microscope (SEM), environmental SEM (ESEM), mercury intrusion porosimetry (MIP) and computed tomography (CT) technology. Moreover, progress in research on the soil microstructure evolution during drying, wetting and wetting/drying cycles is summarized based on reviews of a large body of research papers published in the past several decades. Soils compacted on the wet side of optimum water content generally have a matrix-type structure with a monomodal pore size distribution (PSD), whereas soils compacted on the dry side of optimum water content display an aggregate structure that exhibits bimodal PSD. During drying, decrease in soil volume is mainly caused by the shrinkage of inter-aggregate pores. During wetting, both the intra- and inter-aggregate pores increase gradually in number and sizes. Changes in the characteristics of the soil pore structure significantly depend on stress state as the soil is subjected to wetting. During wetting/drying cycles, soil structural change is not completely reversible, and the generated cumulative swelling/shrinkage deformation mainly derives from macro-pores. Furthermore, based on this analysis and identified research needs, some important areas of research focus are proposed for future work. These areas include innovative methods of sample preparation, new observation techniques, fast quantitative analysis of soil structure, integration of microstructural parameters into macro-mechanical models, and soil microstructure evolution characteristics under multi-field coupled conditions.  相似文献   

19.

Carbide lime is a by-product obtained during the manufacturing of acetylene from the reaction of calcium carbide and water. A major portion of carbide lime is dumped in waste deposition areas, creating an environmental problem. Carbide lime and fly ash have possible applications in slope stabilization, subgrade improvement of roads, and soil treatments under shallow foundations. A series of Atterberg limits tests, compaction tests, unconfined compressive strength tests, ultrasonic pulse velocity tests, and wetting–drying tests were performed on carbide lime and fly ash treated clay soils to evaluate the effects of additive content, curing time, strength development, and the effects of wetting and drying. A total of 8% of carbide lime constituted the fixation point, and peak strength was achieved at 12% carbide lime content. A total amount of 25% additive was found as a threshold changing the Atterberg limits. Test results indicated that the strength of the treated soil improved by the existence of carbide lime and fly ash; best performance was observed in 28-day specimens with 10% carbide lime and 20% fly ash content reaching to 8 times larger strength than untreated soil. The failure patterns of the specimens reflected the curing time and wetting–drying effects. Although, the application of wetting–drying cycles deteriorated the treated soil, the presence of carbide lime partially prevented the strength loss. New relationships between normalized strength and curing time depending on carbide lime content were proposed. Furthermore, a linear relationship between the unconfined compressive strength and the ultrasonic pulse velocity of the treated soils was established.

  相似文献   

20.
The bearing capacity and failure mechanism of encased stone columns are affected by many factors such as encasement length, relative density, strength and stiffness of the encasement material. In soft soils where surrounding soil pressure is low, especially in the top section, the stone columns may be close to a uniaxial compression state, where the uniaxial compression strength controls the bearing capacity of the stone columns. A series of large-scale triaxial tests on ordinary stone columns and uniaxial tests on geotextile encased stone columns have been performed. The stone columns were 300?mm in diameter and 600?mm in height. Samples of four different relative densities, and five types of geotextiles were used in the tests to study the effect of initial void ratio and encasing materials on the uniaxial compression behavior of the stone columns. The results show the uniaxial compressive strength of the encased stone columns is not affected by the initial void ratio but mainly by the tensile strength of the encasing geotextiles. The stress strain curves of the encased stone columns under uniaxial loading condition are nearly liner before failure, which is similar to the tensile behavior of the geotextiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号