首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Gleeble-3500热模拟试验机对TC4 ELI钛合金在两相区温度为750~950℃、应变速率为0.001~70s-1条件下进行等温恒应变速率压缩试验,分析了该合金的热变形行为,并采用Arrhenius方程和BP人工神经网络模型建立了该合金的本构关系模型。结果表明,应变速率与变形温度对TC4 ELI钛合金流变应力影响显著,流变应力随变形温度升高和应变速率降低而降低;在两相区热变形时,原始组织α相发生了不同程度的球化/动态再结晶,并且低应变速率会促进球化/动态再结晶的发生;采用Arrhenius方程和BP人工神经网络模型建立的本构方程平均误差分别为17.51%和1.36%,BP人工神经网络模型具有更高的精度,更适合用于TC4 ELI钛合金的流动应力预测。  相似文献   

2.
本文采用帽形试样对一种典型近α型Ti-6Al-2Zr-1Mo-1V钛合金在不同应变率条件下的绝热剪切特征开展了研究,结果表明:合金的动态应力应变曲线呈现典型的三阶段特征,分别对应于应变硬化、热软化和剪切局部化阶段,最终形成绝热剪切带(ASB)。在近剪切带处,初生α相和次生α相在过渡区内发生扭曲变形,甚至断裂,出现孪晶变形特征,近剪切带区域微观取向差增大,利于位错滑移/孪晶取向的α相优先发生塑性变形,形成亚结构,晶粒碎化,发生动态再结晶;随着应变率的提高,剪切带宽度呈增大趋势,且出现旋涡结构以协调和适应变形;通过纳米压痕试验,分析了ASB及其附近与基体α相、β相的弹性模量和显微硬度,表明该合金的绝热剪切带为一条软化带,影响区的宽度在ASB附近30μm以内。  相似文献   

3.
为了研究TC18钛合金在等高温压缩过程中组织与性能的变化,以Gleeble-1500热模拟试验机进行等高温压缩试验,计算得到所有试样的单向压缩膨胀系数均大于0.9,验证了热压缩试验的有效性。通过控制变量法研究不同变形温度和应变速率对其力学性能以及微观组织的影响,结果表明:TC18钛合金等高温热压缩时,流变应力随着变形温度的升高而降低,随着应变速率的增大而增大;而随着温度和应变速率的增加,组织中的初生等轴α相和次生针状α相逐渐发生相变而消失,β相逐渐长大形成粗大的β晶粒组织,并伴随有动态回复和动态再结晶两种软化机制。  相似文献   

4.
采用分离式Hopkinson Bar技术和一种新型的中断动态试验方法对TC6钛合金进行了动态压缩试验,通过光学显微镜、扫描电子显微镜分析了TC6钛合金变形到不同应变量时所产生绝热剪切带的微观形貌,通过与宏观力学响应相对应,研究了TC6钛合金在动态压缩变形中,绝热剪切带的形成过程及造成应力快速下降的原因。结果表明:在高应变率下,材料绝热剪切带的形成是一个由萌生、扩展、完全发展组成的过程;在应变率为2.5×10~3s~(-1)的动态压缩过程中,"应力塌陷"现象是由于材料内产生了大于一定尺寸的微裂纹所致。  相似文献   

5.
利用分离式Hopkinson压杆装置,在应变率=2000,3000,4000s-1加载条件下,对4种TC4钛合金的等轴组织试样进行了动态压缩试验,得到了不同状态下的动态真应力-应变(σ-ε)曲线。结果表明:随着Al、V含量的增加,TC4钛合金等轴组织试样的平均动态流变应力、均匀动态塑性应变和冲击吸收功都有所增加,动态力学性能有所提高;随着间隙元素含量的增加,TC4钛合金等轴组织试样的平均动态流变应力和冲击吸收功有所提高,而均匀动态塑性应变有所降低。  相似文献   

6.
利用分离式Hopkinson压杆(SHPB),得到了近β型Ti-22Nb合金和稳定β型Ti-47Nb合金在室温高应变率(10~3s~(-1))加载条件下的动态真应力-真应变曲线,并观察了动态冲击后试样的绝热剪切带(ASB)形貌特征。结果表明:近β型Ti-22Nb合金在高应变率加载下较易发生绝热剪切破坏。近β型Ti-22Nb合金的主要析出相为弥散分布的颗粒状纳米ω相,表现出了明显的应变强化效应,Ti-22Nb主要析出相为针状次生α相时,具有比前者更大的平均流变应力。稳定β型Ti-47Nb合金试样没有发生绝热剪切破坏,应变率达到4800 s~(-1)时,该合金的热软化效应明显。  相似文献   

7.
采用Gleeble-1500D热-力学模拟机,将不同晶粒尺寸的TC4试样分别以0、10、30、50和70℃/s的升温速度加热至700℃进行单向压缩并得到流变应力曲线图,结合SEM、TEM等研究了电流作用下TC4钛合金高温压缩过程中流变应力的变化及影响因素。结果表明,无电流时流变应力超过1000 MPa,在电流作用下可降至600 MPa以下。小电流下TC4试样发生动态再结晶,应力随应变快速增大到应力峰值,后又快速下降至稳定状态;大电流下发生动态回复,局部有动态再结晶,无应力峰值,应力最大值低于400 MPa,且电流越大,β相转变为α相的相变越完全。分析认为,TC4钛合金的流变应力受电流大小、动态再结晶和相变的共同影响,电流促进动态再结晶和相变并降低流变应力。  相似文献   

8.
采用分离式霍普金森压杆(SHPB)研究了TiB2/Al复合材料在高应变率压缩下的绝热剪切失效行为,并对其动态失效机理进行了分析。结果表明,高体积分数TiB2/Al复合材料在高应变率压缩下表现出流动应力软化现象,这与带温度软化系数的Johnson-Cook模型预测值一致,而采用弹线性硬化Cowper-Symonds模型的预测值远高于本测试值。TiB2/Al复合材料试样在动态压缩下呈45o剪切断裂或劈裂,在绝热剪切面上发现大量熔融铝相变带。分析表明,绝热剪切带的形成在复合材料内部形成局部低强度区域,从而诱发了材料的瞬间失稳破坏。  相似文献   

9.
在单轴平面应变压缩条件下,采用FLAC模拟扩容角对具有初始随机材料缺陷的光滑端面岩石试样的破坏过程及对应力一应变曲线的影响。利用FISH函数于试样内部规定初始缺陷。密实的岩石服从莫尔库仑剪破坏与拉破坏复合的破坏准则,破坏之后呈现应变软化一理想塑性行为。缺陷在破坏之后经历理想塑性行为。扩容角较高时试样内部最终发生破坏的单元数目较多。随着扩容角的增加,剪切带变得粗壮和陡峭。扩容角对应力一轴向应变曲线影响不大。扩容角增加时,在应变软化阶段,应力一侧向应变曲线变平缓,根据作者过去提出的理论公式,这是由于剪切带宽度增加的贡献超过剪切带倾角增加的贡献所致。当扩容角较高时,应力峰值时试样内部的最大剪切应变增量较高,因而试样破坏的前兆比较明显。剪切带倾角的数值结果与Arthur倾角比较接近,未能超过Coulomb倾角。扩容角越大,剪切带最终可以获得越来越高的剪切应变和体积应变。  相似文献   

10.
用分离式霍普金森压杆对TA2工业纯钛进行了动态压缩及绝热剪切破坏实验研究,得到了不同应变率和不同温度下的宏观应力-应变曲线。通过对压缩本构特性及微观金相破坏的比较分析,讨论了应变率、表观压缩本构特性对绝热剪切形成的影响。结果显示:TA2试样动态压缩呈现绝热剪切破坏特征,绝热剪切带在空间呈对称的双锥形状;应变率越高,形成绝热剪切带的临界应变越小;分析表明,动态压缩实验无法得到关于绝热剪切起始、发展过程的本构软化信息。  相似文献   

11.
采用分离式霍普金森压杆和终点弹道实验装置,研究了α+β区和β区锻造的TC21钛合金的动态力学性能和抗弹性能。结果表明:在动态压缩试验条件下,α+β区锻造的TC21钛合金较之β区锻造的TC21钛合金具有更高的动态强度,而β区锻造的TC21钛合金的临界断裂应变更大,具有更好的动态塑性变形能力;在12.7 mm穿甲弹侵彻条件下,无论是α+β区还是β区锻造的TC21钛合金靶板的抗弹性能均与TC4钛合金靶板的抗弹性能相近,这可能是由于TC21钛合金和TC4钛合金靶板都易于发生绝热剪切破坏所导致。α+β区锻造的双态组织靶板的损伤模式为塑性扩孔导致的背部崩落破坏模式,β区锻造的片层组织靶板的损伤模式为脆性破碎模式;2种组织靶板的失效破坏均为绝热剪切带和其诱发的裂纹所导致。  相似文献   

12.
采用热压缩试验研究置氢量0.22wt%TC21钛合金粉末烧结材料在温度850℃~1000℃和应变速率0.001s-1~0.10 s-1范围内的流变行为和组织演变,分析了该合金烧结材料在试验参数范围内变形的应力-应变曲线特征。动力学分析获得置氢TC21合金粉末烧结材料高温压缩变形的应力指数和变形激活能分别为3.32kJ/mol和442.74kJ/mol,表明置氢TC21合金粉末制品在高温变形过程中均发生了动态再结晶。组织观察发现,在β相区变形时,β晶粒随金属流动方向明显被拉长、变形;在α+β相区变形时,β相的组织变化基本同其在β相区变形时一样,只是β相再结晶过程加剧;在α相区变形时,原始的的片状和等轴状组织中α相组织发生再结晶,初生的α相含量逐渐减少。平面应变状态下发生动态再结晶的临界变形量大于均匀单向压缩状态下的临界变形量。  相似文献   

13.
以TC4钛合金纤维为增强体,5A06铝合金为基体,采用压力浸渗法制备二维连续纤维网增强铝基复合材料(TC4_网/Al)。利用万能材料试验机和分离式霍普金森压杆对TC4_网/Al复合材料分别进行准静态压缩和动态压缩,研究复合材料在室温和高温下的压缩性能。结果表明:该复合材料不论在室温还是高温均表现为正向应变率效应。对复合材料进行准静态压缩(应变率≤1 s~(-1)),当试验温度≤100℃时,试样均沿与轴向约呈45°方向的斜面发生破坏;试验温度≥250℃时,试样没有破坏而发生鼓肚变形。动态压缩(应变率为1500 s~(-1))时,无论在室温还是高温下,该复合材料均未发生破坏。  相似文献   

14.
利用Gleeble-3500热/力模拟试验机进行不同变形参数(变形温度和应变速率)下的高温热模拟单向压缩试验,对得到的真应力-真应变曲线进行分析,研究了不同变形工艺参数对TC4钛合金单向压缩时真流动应力及其压缩组织的影响。通过对变形后试样的金相组织观察,研究了材料在高温变形过程中的动态再结晶和回复过程。结果表明,流变应力随着应变的增加而迅速增大至最大值,随后开始缓慢降低,最后趋于稳定。随着变形温度升高,晶界破碎化程度逐渐增大,条状组织减少,组织中的次生α相含量逐渐增加。  相似文献   

15.
采用gleeble-1500热模拟试验机及分离式霍普金森压杆技术,对TC6钛合金试样进行高温准静态(0.01s-1)压缩试验及室温高应变率(103s-1)剪切试验,通过光学显微镜及透射电镜对比研究2种变形条件下材料微结构演化特点。结果表明:在2种变形条件下材料微结构演化显著不同。在高温准静态条件下变形时,TC6钛合金微结构演化经历了4个阶段:等轴状α相变形为板条状→板条状α相断裂,同时出现动态再结晶晶粒→动态再结晶晶粒长大→发生α/β相变;在高应变率加载条件下变形时,TC6钛合金微结构演化经历了3个阶段:等轴状α相变形为板条状→位错的快速运动,板条状α相变形为更为细长狭窄的长条状→长条状α相断裂,同时出现少量动态再结晶晶粒;在2种变形条件下,TC6钛合金均发生了动态再结晶,但高温准静态下,动态再结晶晶粒较多且发生长大,尺寸为3~5μm,而高应变率加载条件下形成的动态再结晶晶粒较少且没有长大,尺寸为0.1~0.2μm。  相似文献   

16.
基于TC4合金高温恒应变速率拉伸试验和微观组织观察,研究了工艺参数对TC4合金流动应力、应变速率敏感性指数、应变硬化指数和微观组织演变的影响规律,获得了TC4合金高温拉伸变形时宏观力学行为与微观组织演变的关联机制。结果表明:当变形温度为1123~1213 K、应变速率为0.1 s-1时,TC4合金的拉伸应变不超过0.7就会出现局部颈缩并导致开裂;当应变速率为0.01 s-1、变形温度为1183 K时,TC4合金的应变速率敏感性指数m值最大,归因于该变形条件下初生α相呈等轴状且较细小;当应变速率为0.01 s-1时,随着应变增加,应变硬化指数n值呈逐渐减小的趋势,归因于加工硬化和动态软化的共同作用;随着变形温度升高,初生α相由长条状转变为等轴状,随着应变速率增加,初生α相呈现出明显的取向性,不利于晶界滑动或旋转;应变对初始α相形貌和含量影响较小,但对次生α相影响显著。  相似文献   

17.
《塑性工程学报》2016,(6):162-166
研究了TC4钛合金不同应变速率和降温速率时降温压缩过程的流变行为,发现降温压缩瞬时温度下的材料流动应力低于相同温度下的恒温压缩流动应力。经过XRD检测方法分析不同热和变形历史条件下试样的相含量得出,虽然降温和变形过程都促进了β相向α相的转变,但由于降温压缩试样的初始温度较高,变形后其β相的含量高于相同温度的恒温压缩试样,导致降温压缩流动应力较低。通过引入降温影响因子改进了混合物法则,准确地表征了降温过程流动应力与相含量之间关系。  相似文献   

18.
采用分离式霍普金森压杆装置,对TC6钛合金不同组织的圆柱试样和帽形试样分别进行应变率为103s-1量级的动态压缩及动态剪切试验,结合力学响应及微观分析研究不同应力状态下TC6钛合金3种典型组织的绝热剪切敏感性。结果表明:在单轴压缩应力状态下,TC6钛合金3种典型组织绝热剪切敏感性从高到低依次为网篮组织、等轴组织、双态组织;在压剪复合应力状态下,3种典型组织在动态剪切时的绝热剪切敏感性从大到小依次为等轴组织、双态组织、网篮组织;应力状态不同,组织绝热剪切敏感性的差异实质上体现了组织在不同应力状态下的塑性变形能力及绝热剪切带在不同组织中扩展的难易程度。  相似文献   

19.
在变形温度1030~1120℃,应变速率0.001~1.0 s-1,最大变形程度50%时对TC11钛合金进行了高温压缩热模拟试验。分析了TC11钛合金高温流变应力—应变曲线变化规律;分析了变形温度、应变速率和变形程度对组织性能的影响规律。结果表明:在应变速率较小时,TC11钛合金的α相被拉断,在原始晶界处出现细小的晶粒;在应变速率较高时,α相晶粒呈细小的等轴晶;变形温度越低,初生α相的含量越多。  相似文献   

20.
《模具工业》2021,47(9)
为研究TC4 ELI钛合金常温下循环加载的包申格效应,进行了单轴拉伸-压缩的循环加载试验,获得了TC4 ELI循环加载的应力应变曲线,并通过计算获得了表征钛合金包申格效应的参数,包括包申格应变β、包申格应力参数和包申格能量参数。试验结果表明包申格应变及包申格应力参数随预应变量增大而近似线性增加,包申格能量参数变化不大且反向屈服应力随预应变量增加而大幅降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号