首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
BaTiO3-xLiF ceramics were prepared by a conventional sintering method using BaTiO3 powder about 100 nm in diameter. The effects of LiF content (x) and sintering temperature on density, crystalline structure and electrical properties were investigated. A phase transition from tetragonal to orthorhombic symmetry appeared as sintering temperatures were raised from 1100 °C to 1200 °C or as LiF was added from 0 mol% to 3 mol%. BaTiO3-6 mol% LiF ceramic sintered at 1000 °C exhibited a high relative density of 95.5%, which was comparable to that for pure BaTiO3 sintered at 1250 °C. BaTiO3-4 mol% LiF ceramic sintered at 1100 °C exhibited excellent properties with a piezoelectric constant d33 = 270 pC/N and a planar electromechanical coupling coefficient kp = 45%, because it is close to the phase transition point in addition to high density.  相似文献   

2.
Pb(Co1/3Nb2/3)O3 (PCN) ceramics have been produced by sintering PCN powders synthesized from lead oxide (PbO) and cobalt niobate (CoNb2O6) with an effective method developed for minimizing the level of PbO loss during sintering. Attention has been focused on relationships between sintering conditions, phase formation, density, microstructural development, dielectric and ferroelectric properties of the sintered ceramics. From X-ray diffraction analysis, the optimum sintering temperature for the high purity PCN phase was found at approximately 1050 and 1100 °C. The densities of sintered PCN ceramics increased with increasing sintering temperature. However, it is also observed that at very high temperature the density began to decrease. PCN ceramic sintered at 1050 °C has small grain size with variation in grain shape. There is insignificant change of dielectric properties with sintering temperature. The PE hysteresis loops observed at −70 °C are of slim-loop type with small remanent polarization values, which confirmed relaxor ferroelectric behavior of PCN ceramics.  相似文献   

3.
A new low loss spinel microwave dielectric ceramic with composition of ZnLi2/3Ti4/3O4 was synthesized by the conventional solid-state ceramic route. The ceramic can be well densified after sintering above 1075 °C for 2 h in air. X-ray diffraction data show that ZnLi2/3Ti4/3O4 ceramic has a cubic structure [Fd-3m (227)] similar to MgFe2O4 with lattice parameters of a = 8.40172 Å, V = 593.07 Å3, Z = 8 and ρ = 4.43 g/cm3. The best microwave dielectric properties can be obtained in ceramic with relative permittivity of 20.6, Q × f value of 106,700 GHz and τf value of −48 ppm/°C. The addition of BaCu(B2O5) (BCB) can effectively lower the sintering temperature from 1075 °C to 900 °C and does not induce much degradation of the microwave dielectric properties. Compatibility with Ag electrode indicates that the BCB added ZnLi2/3Ti4/3O4 ceramics are good candidates for LTCC applications.  相似文献   

4.
A high density single-phase lead magnesium niobate ceramic with the highest peak dielectric constant reported so far, has been synthesized and sintered simultaneously via a modified mixed oxide route, using mixed oxide nanopowder and single-step sintering. The mixed nanopowder was sintered at 1200 °C in air and PbO atmospheres. By comparison, samples sintered in air, gained pyrochlore structure, while those samples sintered in PbO atmosphere had pure perovskite structure. Pellets sintered for 2.5 h exhibited best dielectric properties with peak dielectric constant of 18,672 at the frequency of 1 kHz at −13 °C. The dielectric properties, compressibility, phase formation, densification, and microstructure of the samples were investigated.  相似文献   

5.
The effect of BaCu(B2O5) (BCB) addition on the sintering temperature and microwave dielectric properties of 2.5ZnO-0.2SnO2-4.8TiO2-2.5Nb2O5 (ZSTN) has been investigated by the solid-state ceramic route. X-ray diffraction and scanning electron microscopy techniques were used to analysis the structure and microstructure. The microwave dielectric properties were measured by the resonance method. It was found that the addition of BCB can effectively lower the sintering temperature from 1100 °C to 900 °C, and improves the microwave dielectric properties of ZSTN ceramics. The BCB doped ZSTN ceramics can be compatible with Ag electrode, which makes it a promising ceramic for LTCC technology application.  相似文献   

6.
BaTiO3 ceramics were prepared by conventional sintering technique with a special emphasis on the effects of sintering temperature (1100-1230 °C) on the crystalline structure and piezoelectric properties. XRD patterns indicated that the crystallographic structure changed from tetragonal phase to orthorhombic one with raising sintering temperature from 1160 °C to 1180 °C. Domains were shaped in a stripe and a herringbone in orthorhombic samples for BaTiO3 ceramics. The domain width and domain density increased with raising sintering temperature. The BaTiO3 ceramic sintered at 1190 °C showed the excellent electrical properties, d33 = 355 pC/N, kp = 40%, Pr = 10.2 μC/cm2, respectively, which are originated to the contributions of both the crystallographic structure transition and nano-domain.  相似文献   

7.
In this study, the effects of CaTiO3 addition on the sintering characteristics and microwave dielectric properties of BiSbO4 were investigated. Pure BiSbO4 achieved a sintered density of 8.46 g/cm3 at 1100 °C. The value of sintered density decreased with increasing CaTiO3, and sintering at a temperature higher than 1100 °C led to a large weight loss (>2 wt%) caused by the volatile nature of the compound. Samples either sintered above 1100 °C or with a CaTiO3 content exceeding 3 wt% showed poor densification. SEM micrographs revealed microstructures with bimodal grain size distribution. The size of the smaller grains ranged from 0.5 to 1.2 μm and that of the larger grains between 3 and 7 μm. The microwave dielectric properties of the (1−x) BiSbO4−x CaTiO3 ceramics are dependent both on the x value and on the sintering temperature. The 99.0 wt% BiSbO4–1.0 wt% CaTiO3 ceramic sintered at 1100 °C reported overall microwave dielectric properties that can be summarized as εr≈21.8, Q×f≈61,150 GHz, and τf≈−40.1 ppm/°C, all superior to those of the BiSbO4 ceramics sintered with other additives.  相似文献   

8.
Li2ZnTi3O8 ceramics doped with ZnO–La2O3–B2O3 glass were prepared by the conventional solid-state ceramic route. The effects of the ZnO–La2O3–B2O3 glass on the sintering temperature, phase composition, microstructure and microwave dielectric properties of Li2ZnTi3O8 ceramics were investigated. The addition of ZLB glass can reduce the sintering temperature of Li2ZnTi3O8 ceramic from 1075 °C to 925 °C without obvious degradation of the microwave dielectric properties. Only a single phase Li2ZnTi3O8 with cubic spinel structure is formed in Li2ZnTi3O8 ceramic with ZLB addition sintered at 925 °C. Typically, 1.0 wt% ZLB-doped Li2ZnTi3O8 ceramic sintered at 925 °C can reach a maximum relative density of 95.8% and exhibits good microwave dielectric properties of εr=24.34, Q×f=41,360 GHz and τf=−13.4 ppm/°C. Moreover, this material is compatible with Ag electrode, which makes it a promising candidate for LTCC application.  相似文献   

9.
10.
The microwave dielectric properties of La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics prepared by the conventional solid-state method were investigated for application in mobile communication. A 100 °C reduction of the sintering temperature was obtained by using CuO as a sintering aid. A dielectric constant of 20.0, a quality factor (Q × f) of 50,100 GHz and a temperature coefficient of resonant frequency τf of −78.3 ppm/°C were obtained when La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics with 0.25 wt.% CuO were sintered at 1500 °C for 4 h.  相似文献   

11.
Yttrium aluminum garnet (YAG) nanopowders with mean particle size of about 50 nm synthesized by a modified co-precipitation method were used to sinter bulk YAG ceramic by two-step sintering method. Full densification was achieved by heating the sample up to 1800 °C followed by holding at 1550 °C for 10 h. Transparent YAG ceramics were obtained by suppressing grain-boundary migration while promoting grain-boundary diffusion during the two-step sintering process. The microstructure of the YAG ceramic is homogeneous without abnormal grain growth and the transmittance of the sintered sample is 43%.  相似文献   

12.
Barium titanate doped with calcium and zirconium (BCTZ) could be used at low temperature to replace lead based piezoelectric ceramics (PZT). The classical way to obtain BCTZ is the solid-state route coupled with conventional sintering, but this step is time-consuming. To reduce the duration of this process, microwave heating was used for sintering. It is a fast sintering method and the heating rate was around 200 °C/min in this study. Slightly better electrical properties with finer microstructures (d33* = 706 pm/V, grain size about 42.1 ± 14.2 μm) were obtained for samples sintered by microwave heating during 50 min compared to the conventional sintering (d33* = 622 pm/V, 22.6 ± 4.4 μm). The main result of this study is that by using microwave heating, the sintering step duration (including heating, dwell time and cooling) was drastically reduced: 1.5 h for microwave sintering against 12.5 h for conventional sintering.  相似文献   

13.
Lead free 0.94(K0.5Na0.5NbO3)–0.06(LiNbO3) (KNN–LN) system was synthesized by conventional solid state reaction route (CSSRR). The KNN–LN system was calcined at 850 °C for 6 h for the formation of single perovskite phase whereas the sintering was done at 1050 °C, 1080 °C and 1100 °C for 4 h, respectively. The KNN–LN samples sintered at 1080 °C show better properties: room temperature (RT) dielectric constant (?r) ∼936, dielectric loss (tan δ) ∼0.016 at 1 MHz, a relatively high bulk density (ρ) ∼4.385 g/cm3, which is 97.5% of the theoretical density (TD ∼ 4.51), remnant polarization (Pr) ∼6.4 μC/cm2 and coercive field (Ec) ∼9.6 kV/cm have been observed.  相似文献   

14.
Lead zirconate titanate [Pb(Zr0.52, Ti0.48)O3 (PZT)] films were grown by sol–gel process on nickel and hastelloy foils. PZT perovskite phase was obtained at 650 °C annealing condition and surface topography showed uniform and dense microstructure. The characterization on dielectric properties indicates that diffusion of foil elements into the PZT and the formation of low capacitance interfacial layer occur during process. In order to reduce the diffusion effect of foil element and/or interfacial layer, barrier layers such as Ru(RuO2) and LaNiO3 layers were utilized on foil substrates. The increase of grain size was observed in PZT films grown on barrier layers. Dielectric properties are greatly improved without degrading ultimate dielectric breakdown strength.  相似文献   

15.
Effects of sintering temperature on the microstructure and electrical properties of (K0.40Na0.60)0.94Li0.06Nb0.94SbO3 (KNLNS) lead-free ceramics are investigated. The grain size gradually becomes larger with increasing sintering temperature from 1055 °C to 1105 °C, and the piezoelectric property could be enhanced by optimizing their sintering temperature. The ceramic sintered at 1075 °C has optimum electrical properties, i.e., d33~272 pC/N, kp~43.5%, εr~1152, tan δ~0.026, and TC~346 °C. These results show that the sintering temperature can optimize electrical properties of KNLNS ceramics.  相似文献   

16.
Barium titanate (BaTiO3/BT) ferroelectric system was synthesized in single perovskite phase at low temperature by using powders derived from modified solid state reaction (MSSR) and sintered by microwave (MW) processing routes. Conventional calcination temperature was optimized at 900 °C for 4 h. MW sintering of BT samples was carried out at 1100 °C for 30 min to get dense (98% density) ceramics. Room temperature (RT) dielectric constant (?r) and dielectric loss (tan δ) at 1 kHz frequency of MW sintered BT samples was found to be ∼2500 and 0.03, respectively. Saturated polarization vs. electric field (P-E) loops with remnant polarization (Pr) ∼6 μC/cm2 and coercive field (Ec) ∼1.45 kV/cm confirmed the ferroelectric nature of MW sintered BT samples. Piezoelectric coefficient from strain vs. electric field (S-E) loops study was found to be 335 pm/V.  相似文献   

17.
(Bi0.5Na0.5)0.94Ba0.06TiO3 (abbreviated as BNBT6) ceramic of near MPB composition was synthesized by two different processes. The first one is the addition of pre-synthesized BaTiO3 and pre-milled Bi2O3, Na2CO3, BaCO3 powders and calcination powder milled with a high energy milling machine in order to obtain a nano-particle size. The second one is a conventional one to compare with the former process. The pre-milling and the pre-synthesis process of raw materials lowered the calcination temperature to the extent of 59 °C as compared with conventionally fabricated BNBT6. The particle size of the powder exposed to heavy high energy milling reduced to 50–70 nm, whereas that of the conventionally ball-milled powder without the pre-milling and the pre-synthesis process had a larger size of 280 nm. To investigate the effects of the modified process on the characteristic of BNBT6 ceramics, the dielectric and the piezoelectric properties of sintered specimens fabricated by the two different processes were evaluated. It was found that the properties of the nano-sized BNBT6 ceramic near the MPB composition were increased by the modified mixing and milling method, showing superior characteristics in terms of the piezoelectric/dielectric constant and sintering density compared with those of the conventional process. The modified mixing and milling method was considered to be a new and promising process for lead-free piezoelectric ceramics owing to their excellent piezoelectric/dielectric properties.  相似文献   

18.
3 mol% Y2O3-stabilized zirconia nanopowders were fabricated using various sintering techniques; conventional sintering (CS) and non-conventional sintering such as microwave (MW) and pulsed electric current-assisted-sintering (PECS) at 1300 °C and 1400 °C. A considerable difference in the densification behaviour between conventional and non-conventional sintered specimens was observed. The MW materials attain a bulk density 99.4% theoretical density (t.d.) at 1300 °C, while the CS materials attain only 92.5% t.d. and PECS 98.7% t.d. Detailed microstructural evaluation indicated that a low temperature densification leading to finer grain sizes (135 nm) could be achieved by PECS followed by MW with an average sintered grain size of 188 nm and CS 225 nm. It is believed that the high heating rate and effective particle packing are responsible for the improvements in these properties.  相似文献   

19.
20.
Ba0.6Sr0.4TiO3 powder was synthesized by a citrate method. The phase development was examined with respect to calcining temperature and heating rate during the calcining process. The results reveal a crucial role of the heating rate to the formation of a pure perovskite phase at low calcining temperatures. It was found that keeping relatively low heating rates ≤0.7 °C/min during the calcining process after 300 °C was favorable to a sufficient decomposition of (Ba,Sr)2Ti2O5·CO3 intermediate phase at low temperatures and consequently led to the formation of a pure perovskite phase at 550 °C. Ba0.6Sr0.4TiO3 powder calcined at the temperature under the heating rate of 0.7 °C/min showed a superfine and uniform particle morphology and high sintering reactivity. As a result, the ceramic specimens prepared from the powder attained reasonable relative densities (94–95%) at sintering temperatures of 1250–1270 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号