首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fibers from renewable resources are gaining interest for use as fillers in hybrid composite materials. Particularly waste material such as sugar cane bagasse offer large availability, biodegradability, and low cost. Influence of single components on composite material properties is an important parameter to be evaluated. Composites of poly(vinyl alcohol) (PVA) at 88 and 98% saponification degrees and sugar cane bagasse (B) were prepared by casting water suspensions of the components and characterized for their dynamic mechanical behavior. The storage modulus below and above the glass transition and the shape of the relaxation process are strongly influenced by the amount of B. Good adhesion was observed at the lignocellulosic fiber–synthetic polymer interface. Urea and glycerol are able to plastify the PVA/B composites thus giving rise to a decrease of the glass transition temperature and to a widening of the glass transition temperature gap. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 426–432, 2004  相似文献   

2.
This work comparatively evaluates the effect of nano-SiO2 (at 2 and 3 wt%), rice husk and bagasse ash (at 5 and 10 wt%) on the wear resistance and friction coefficient of HDPE (high-density polyethylene)/lignocellulosic fiber composites. Rice husk and bagasse fibers at 50% by weight contents were mixed with HDPE and 2% maleic anhydride-grafted polyethylene as compatibilizer. SEM images showed a fairly appropriate connection between the polymer matrix and fillers. We found that the fillers improve the wear resistance, and the effect of nano-SiO2 is more pronounced. The rice husk ash showed a better performance compared to the bagasse ash, probably due to greater SiO2 content measured by X-ray fluorescence spectrometry. In contrast to nano-SiO2, both ashes had a reducing effect on other mechanical strengths (Izod impact resistance, modulus of elasticity and modulus of rupture). All fillers remarkably increased the water absorption and thickness swelling. The water uptake of composites increased after wear.  相似文献   

3.
In this work, sugarcane bagasse fibers were used as filler in composites having recycled high‐density polyethylene (PEr) as matrix. Because of the poor interaction between fibers surface and the PEr, the surface of bagasse was chemically modified. This modification consists of washing with water at 80°C, a mercerization process using sodium hydroxide and acetylation reaction with acetic anhydride. The chemical modification was characterized by Fourier transform infrared–horizontal attenuated total reflectance (FTIR‐HATR) and 13C nuclear magnetic resonance spectroscopies (NMR), thermogravimetric analysis (TGA), and scanning electronic microscopy (SEM). The composites were prepared from modified and unmodified fibers into PEr matrix, containing 5, 10, and 20% (w/w) of fiber. The samples were processed by extrusion and molds were prepared by injection process in order to perform mechanical tests. These materials were analyzed by SEM, TGA, and the water uptake was evaluated. Also, their mechanical properties were analyzed. Morphological analysis indicated that the chemical modification of sugarcane bagasse increased the compatibility between matrix and reinforcement. Tensile, flexural, and impact tests showed that the mechanical properties of the composite were improved compared to PEr due to the presence of the fibers. POLYM. COMPOS., 35:768–774, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
Investigations have been continuing to prepare environmental friendly lignocellulosic composites from agro-based fibers. To evaluate the possibility of spent sulfite liquor retained on neutral sulfite bagasse pulp (NSABP) as binding agent instead of HCHO-based adhesive (resol type resin) to prepare agro-based composite satisfying environmental regulations. The properties of unwashed-NSABP-composites were compared with those produced from completely washed pulp, as well as from that produced from commercial produced from resol-Asplund pulp. The neutral sulfite pulping conditions and presteaming the bagasse prior NS-pulping were optimized. The results obtained show that, the most desirable properties of agro-composite were obtained by presteaming the raw bagasse for 20 sec at 170–175°C (Asplund defibrator process), followed by neutral sulfite pulping (NSAB pulp). The spent sulfite liquor retained on NS-pulp was more successful for improving the board properties than conventional adding synthetic resol resin to Asplund bagasse pulp. The chemical analyses of the obtained NS-pulps and the physico-mechanical properties of the agro-composites prepared were correlated and illustrated in polynomial equations.  相似文献   

5.
Fabrication of high strength PVA/SWCNT composite fibers by gel spinning   总被引:1,自引:0,他引:1  
High-strength composite fibers were prepared from polyvinyl alcohol (PVA) (Degree of polymerization: 1500) reinforced by single-walled carbon nanotubes (SWCNTs) containing few defects. The SWCNTs were dispersed in a 10 wt.% PVA/dimethylsulfoxide solution using a mechanical homogenizer that reduced the size of SWCNT aggregations to smaller bundles. The macroscopically homogeneous dispersion was extruded into cold methanol to form fibers by gel spinning followed by a hot-drawing. The tensile strength of the well-oriented composite fibers with 0.3 wt.% SWCNTs was 2.2 GPa which is extremely high value among PVA composite fibers ever reported using a commercial grade PVA. The strength of neat PVA fibers prepared by the same procedure was 1.7 GPa. Structural analysis showed that the PVA component in the composite fibers possessed almost the same structure as that of neat PVA fibers. Hence a small amount of SWCNTs straightforward enhanced by 0.5 GPa the tensile strength of PVA fibers. The results of mechanical properties and Raman spectra for the SWCNT composites suggest the relatively good interfacial adhesion of the nanotubes and PVA that improves the load transfer from the polymer matrix to the reinforcing phase.  相似文献   

6.
Polyvinyl alcohol (PVA)/gelatin composite fibers containing carbon nanotubes (CNTs) had been prepared by wet‐spinning method. A remarkable increase of tensile strength of the PVA/gelatin fibers was achieved by adding small amount of CNT. The mechanism of reinforcement has been studied using a combination of differential scanning calorimetry (DSC), 2D wide‐angle X‐ray diffraction (2D‐WAXD) and scanning electron microscopy (SEM). SEM showed a decreased gelatin domain size by adding CNTs, suggesting a possible compatibilization effect between PVA and gelatin. On the other hand, an increased crystallinity and degree of orientation of PVA/gelatin fibers has been observed by adding CNTs. Thus, the increased compatibilization, crystallinity and degree of orientation in PVA/gelatin/CNTs composite fibers should be the reasons for the observed increase of mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Calcium alginate fibers were prepared from sodium alginate by extruding aqueous sodium alginate solution (4% by weight) into a calcium chloride (2% by weight) bath. Water uptake and mechanical properties of the calcium alginate fiber were investigated. Water uptake tests of calcium alginate showed that it absorbed 50% of water within a minute and indicated strong hydrophilic nature. Polyvinyl alcohol (PVA)-based calcium alginate fiber reinforced unidirectional composites (10% fiber by weight) were fabricated by compression molding. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of the PVA matrix and the composite were evaluated. TS, BS, TM, and BM of the PVA matrix were found 10, 18, 320 and 532 MPa, respectively. TS and BS of the PVA based composite were found to be 16 and 27 MPa, respectively, which were 60 and 50% higher than that of the PVA matrix. TM and BM of the composite were found to be 620 and 1056 MPa, respectively, which were improved by 94 and 98% over the matrix material. Degradation tests of the composites were performed for up to 2 months in soil medium and found that composites lost almost 50% of its original mechanical properties. The interfacial properties of the composite were also investigated by using the single fiber fragmentation test (SFFT).  相似文献   

8.
Hydrogels of 350 water-absorbency (g H2O2/g sample) and 900 water-keeping capacity (mL H2O2/g sample) were prepared from local lignocellulosic wastes. The wastes used are rice straw, sugar-cane bagasse, and cotton stalks. These hydrogels were prepared via graft–polymerization reaction using some vinyl monomers, followed by alkali hydrolysis. The effects of grafting parameters (concentration of both initiator and monomer, temperature, and time), purity of lignocellulose sample, type of monomer, pretreatment of lignocellulose, and manner of saponification reaction were examined.

The application of such polymeric materials as soil conditioners, by following the pore size distribution of sand soil, in comparison with conventional soil conditioners (e.g., natural organic fertilizer and clay), were also evaluated.  相似文献   

9.
Polyurethane composites filled with carbon fibers (CF) and carbon nanotubes (CNT) were prepared by mixing and injection molding, and its mechanical as well as their thermal properties were investigated. Dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA), and thermal conductivity tests were done, and the properties were evaluated as a function of the filler concentration. The storage modulus of the composites increased with fillers concentration, which also mean the increase of the stiffness, suggest a good adhesion between the polyurethane matrix and the fillers. Addition of more CF and CNT to the composites broadened and lowered the peak of tan δ specifies that the polyurethane composite became more elastic because there is a good adhesion between the fillers and the matrix. The addition of carbon fillers improves the thermal stability of the polyurethane. The inclusions of CNT show a better thermal stability when compared with CF. The addition of carbon fillers also increased the thermal conductivity of the polyurethane composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Polyvinyl alcohol (PVA) hydrogel is a promising material possessing good chemical stability, high water absorption, excellent biocompatibility and biological aging resistant. However, the poor mechanical performance of PVA hydrogel limits its applications. Here we report the utilization of one-dimensional (1D) BN nanofibers (BNNFs) as nanofillers into PVA matrix to prepare a novel kind of BNNFs/PVA composite hydrogel via a cyclic freezing and thawing method. For comparison, the composite hydrogels using spherical BN nanoparticles i.e. BN nanospheres (BNNSs) as fillers were also prepared. The mechanical properties, thermal stabilities and swelling behaviors of the composite hydrogels were investigated in detail. Our study indicates that the mechanical properties of the hydrogels can be improved by adding of BNNFs. After loading of BNNFs into PVA with content of 0.5?wt%, the compressive strength of the composite hydrogel increases by 252% compared with that of pure PVA hydrogel. The tensile performance of BNNFs/PVA composite hydrogels has also been improved. Impressive 87.8% increases in tensile strengths can be obtained with 1?wt% BNNFs added. In addition, with the increase of BNNFs content, the thermal stability and the swelling ratio of hydrogels are increased gradually. The swelling ratio of hydrogel increases by 56.3% with only 1?wt% BNNFs added. In comparison, the improvement effects of the BNNS fillers on the mechanical strengths and swelling ratios are much weaker. The enhanced effects of BNNFs can be ascribed to the strong hydrogen bond interaction between BNNFs and PVA. The high aspect ratios of the nanofibers should also be took into account.  相似文献   

11.
We compared the relationship of the behavior and performance of sugarcane baggase and rice straw as supercapacitor electrodes. X-ray diffraction revealed the evolution of crystallites of carbon and silica during activation at higher temperature. The morphology of the carbon samples was determined by SEM. The surface area, pore volume, and pore size distribution of carbon composites were measured. The electrochemical responses were studied by using cyclic voltammetry experiment at 25 °C in a three-electrode configuration. The specific capacitance of the sugarcane bagasse carbon electrodes was in the range 92-340 F/g, whereas for rice straw, it was found to be 56–112 F/g at scan rates of 2-3 mV/s. The sugarcane bagasse carbon exhibited better performance than rice straw carbon using H2SO4 as the electrolyte. However, the results clearly show that lignocellulosic wastes possess a new biomass source of carbonaceous materials for high-performance supercapacitors.  相似文献   

12.
By in-situ degradation of collagen fibers into gelatin under the thermal/mechanochemical effects of the extruder, PVA/gelatin composites were successfully prepared using PVA and collagen fibers derived from cattle hide limed split wastes as raw materials. The effect of extrusion temperature on the degradation of collagen fibers and the thermal processability and mechanical properties of the composites were studied. The results showed that the controllable degradation of collagen fibers in extruder could be realized by adjusting the extrusion temperature. Particularly, high extrusion temperature promoted the generation of low-molecular-weight gelatin and the esterification between the hydroxyl of PVA and the carboxyl of gelatin, as well as the hydrogen bonding between O-H, C = O, N-H in gelatin and water or O-H in PVA, thus endowing gelatin with the good compatibility with PVA, and significantly increasing the content of non-freezable bound water in system. Ascribing to the plasticization of the gelatin with lower molecular weight and more non-freezable bound water, PVA/gelatin composites exhibited the improved thermal processability and the decreased mechanical properties with the increase of extrusion temperature. Even so, the tensile strength and Young’s modulus of the composite obtained at 175 °C still above 40 MPa and 1.0 GPa respectively, satisfying some practical applications.  相似文献   

13.
为了改善聚乙烯醇(PVA)膜的机械性能,选用玉米淀粉为原材料,50℃条件下以过硫酸铵和尿素为引发剂,同时加入丙烯酰胺对淀粉进行接枝改性,制备得到丙烯酰胺改性的玉米淀粉/PVA复合膜。其中,优化改性淀粉的接枝率确定最佳合成条件为淀粉/丙烯酰胺的质量比为3∶7、引发剂过硫酸铵占单体总质量的0.5%、尿素占单体总质量的0.5%。进一步利用优化的改性淀粉为改性剂,制备了系列改性玉米淀粉/PVA复合膜。采用傅里叶红外光谱、扫描电子显微镜(SEM)对复合膜的组成与结构进行表征,同时测定复合膜的机械性能、耐水性、耐热性等物化特性,结果表明30%ST-0.50%APSU改性淀粉的单体转化率为95.0%,接枝率为85.2%。 30%ST-0.50%APSU/PVA复合膜的耐热性能轻微下降,但断裂伸长率提高了256%,耐水性能提高了43.1%。  相似文献   

14.
Bioartificial polymeric materials represent a new class of polymeric materials based on blends of synthetic and natural polymers, designed with the purpose of producing new materials with enhanced properties with respect to the single components. The mechanical properties of bioartificial materials prepared using poly(vinyl alcohol) (PVA), poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) as synthetic components, and collagen (SC), gelatin, starch, hyaluronic acid (HA) and dextran as biological components, were investigated by dynamic mechanical thermal analysis. The materials were prepared in the form of films or hydrogels and treated by glutaraldehyde (GTA) vapour or thermal dehydration in order to reduce their solubility in water. The results indicate that SC/PVA, gelatin/PVA and starch/PVA films behave as biphasic systems, showing good mechanical properties over a wide range of temperature. It was observed that the GTA procedure affects only the biological component of the SC/PVA and gelatin/PVA blends, whilst the thermal treatment influences mainly the synthetic polymer. In the case of HA/PVA hydrogels, a modulus variation was found with the HA content related to the organization degree and perfection of the PVA network structure. It seems evident that, in the experimental conditions used, dextran/PAA mixtures behave as miscible blends showing a glass transition intermediate between those of the pure components. With both untreated and GTA-treated gelatin/PMAA blends, it was not possible to evaluate the miscibility of the systems; it could only be affirmed that these materials show good mechanical properties over a wide range of temperature. © 1997 SCI.  相似文献   

15.
Poly(vinyl alcohol) (PVA) composite fibers with high fraction of multiwalled carbon nanotubes (MWCNTs) were prepared by gel spinning process. Here, a modified process was introduced to prepare concentrated PVA/MWCNTs/DMSO spinning dope, and to attain good dispersion of MWCNTs in the fibers. The final composite fibers were studied by thermogravimetric analyzer (TGA), Fourier transform infrared spectrometer (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), and WAXD analysis. The total content of MWCNTs in PVA composite fibers, from 5 to 30 wt%, was confirmed by TGA analysis. FTIR and Raman measurements demonstrated the existence of strong hydrogen interaction between MWCNTs and PVA matrix. SEM images of composite fibers showed smooth surface, regular cross‐section shape and good dispersion of MWCNTs in the fibers. DSC analysis showed that the crystallinity first increased and then decreased with the increase of MWCNTs contents. It can be concluded that low concentration of MWNCTs can act as nucleation sites for crystallization of PVA component, and large amount of MWCNTs may impede the crystallization of PVA component. The WAXD analysis results indicated that the crystal orientation of the PVA component in PVA composite fibers is almost identical at the same drawn ratio. Polarized Raman analysis indicated a small increase in MWCNTs orientation for the composite fibers. The mechanical properties tests showed that the composite fibers exhibit significant improvement in tensile strength and modulus as compared to the neat PVA fibers. The composite fibers also showed sustained growth in electrical conductivity. POLYM. ENG. SCI., 58:37–45, 2018. © 2017 Society of Plastics Engineers  相似文献   

16.
利用硅烷处理的甘蔗渣纤维填充无规共聚聚丙烯制备了复合材料,研究其力学性能与相态结构。结果表明:在甘蔗渣用量为10~15份时,用硅烷KH570处理的甘蔗渣制备的复合材料较直接填充物的拉伸强度与冲击强度各提高30%以上;试样结晶更完善,纤维在树脂中分布更均匀。  相似文献   

17.
张同心  金贤  赵琦  包建军 《塑料工业》2007,35(10):49-52
以甲酰胺/己内酰胺为复配增塑剂,添加纳米二氧化硅(SiO2)熔融制备了热塑性淀粉/聚乙烯醇/纳米二氧化硅(TPS/PVA/SiO2)复合材料,研究了复合材料的力学性能、流变性能和耐水性能。结果表明:添加1phr的表面改性SiO2,TPS/PVA的拉伸强度和断裂伸长率以及耐水性能均有所提高,但过量的纳米SiO2对材料的力学性能有损害;经KH560表面改性的纳米SiO2的团聚明显减少,因而对TPS/PVA性能的改善更明显;TPS/PVA/SiO2复合材料具有优良的加工性能,熔体表现出假塑性流体的特征。  相似文献   

18.
Whereas lignocellulosic fibers have received considerable attention as a reinforcing agent in thermoplastic composites, their applicability to reactive polymer systems remains of considerable interest. The hydroxyl‐rich nature of natural lignocellulosic fibers suggests that they are particularly useful in thermosetting systems such as polyurethanes. To further this concept, urethane composites were prepared using both unused thermomechanical pulp and recycled newsprint fibers. In formulating the materials, the fibers were considered as a pseudo‐reactant, contributing to the network formation. A di‐functional and tri‐functional poly(propylene oxide)‐based polyol were investigated as the synthetic components with a polyol‐miscible isocyanate resin serving as a crosslinking agent. The mechanical properties of the composites were found to depend most strongly on the type of fiber, and specifically the accessibility of hydroxy functionality on the fiber. Dynamic mechanical analysis, swelling behavior, and scanning electron micrographs of failure surfaces all provided evidence of a substantial interphase in the composites that directly impacted performance properties. The functionality of the synthetic polyol further distinguished the behavior of the composite materials. Tri‐functional polyols generally increased strength and stiffness, regardless of fiber type. The data suggest that synthetic polyol functionality and relative accessibility of the internal polymer structure of the fiber wall are dominant factors in determining the extent of interphase development. Considerable opportunity exists to engineer the properties of this material system given the wide range of natural fibers and synthetic polyols available for formulation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 546–555, 2001  相似文献   

19.
The fiber characteristics (i.e., the fiber type, morphology, and dimension) and polymer melt flow index (MFI) significantly affected mechanical properties of sugarcane fiber/HDPE composites. The length and diameter of sugarcane fibers followed a lognormal distribution before and after compounding. The long fibers had a significant reduction in the dimension and aspect ratio during compounding. However, the short fibers had close values in these two properties before and after compounding. For the resultant sugarcane fiber/polymer composites, the HDPE resins with a low MFI value presented high tensile and impact strengths. Because of high sugar content, the pure rind fiber had a poor performance as filler in the HDPE resins with respect to the raw bagasse fiber and alkali‐extracted bagasse fiber. On the other hand, the aspect ratio was proportional to the mechanical performance of the fibers in the HDPE resins. As a result, the fibers with a large aspect ratio and low sucrose content improved the strength properties of the resultant composites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5607–5619, 2006  相似文献   

20.
Lignin, extracted from sugarcane bagasse by the organosolv process, was used as a partial substitute of phenol (40 w/w) in resole phenolic matrices. Short sugarcane fibers were used as reinforcement in these polymeric matrices to obtain fiber‐reinforced composites. Thermoset polymers (phenolic and lignophenolic) and related composites were obtained by compression molding and characterized by mechanical tests such as impact, differential mechanical thermoanalysis (DMTA), and hardness tests. The impact test showed an improvement in the impact strength when sugarcane bagasse was used. The inner part of the fractured samples was analyzed by scanning electron microscopy (SEM), and the results indicated adhesion between fibers and matrix, because the fibers are not set free, suggesting they suffered a break during the impact test. The modification of fiber surface (mercerization and esterification) did not lead to an improvement in impact strength. The results as a whole showed that it is feasible to replace part of phenol by lignin in phenolic matrices without loss of properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 880–888, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号