首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Communication between robots is key to performance in cooperative multi-robot systems. In practice, communication connections for information exchange between all robots are not always guaranteed, which adds difficulty in performing state estimation. This paper examines the decentralized cooperative simultaneous localization and mapping (SLAM) problem, in which each robot is required to estimate the map and all robot states under a sparsely-communicating and dynamic network. We show how the exact, centralized-equivalent estimate can be obtained by all robots in the network in a decentralized manner even when the network is never fully connected. Furthermore, a robot only needs to consider its own knowledge of the network topology in order to detect when the centralized-equivalent estimate is obtainable. Our approach is validated through more than 250 min of hardware experiments using a team of real robots. The resulting estimates are compared against accurate groundtruth data for all robot poses and landmark positions. In addition, we examined the effects of communication range limit on our algorithm’s performance.  相似文献   

2.
基于局部子地图方法的多机器人主动同时定位与地图创建   总被引:2,自引:0,他引:2  
研究了多机器人在未知环境下以主动的方式协作完成同时定位与地图创建(SLAM)的问题.引入局部子地图方法,由每个机器人建立自身周围局部区域的子地图,使多个机器人之间的地图创建相互独立,从而对全局环境的SLAM问题进行分解.而每个机器人在建立局部子地图时将主动SLAM问题转化为多目标优化问题;机器人选取最优的控制输入,使定位与地图创建的准确性、信息增益以及多机器人之间的协调关系得到综合优化.最后,通过扩展的卡尔曼滤波器(EKF)对子地图进行融合得到全局地图.仿真结果验证了该方法的有效性.  相似文献   

3.
4.
多移动机器人系统在完成同时定位和地图构建SLAM任务时,机器人之间常常存在相互碰撞的问题,而这种碰撞的避免又不同于一般的避障,因为避障问题中的障碍物一般是不动的。为了解决机器人之间的避碰问题,提出了一种基于效益的多机器人避碰协调策略。该策略以提高多机器人系统探索效率为主,确定机器人通过交叉路口的顺序。同时考虑了动态协调避碰的情况,给出了确定机器人通过交叉路口顺序的算法。通过机器人在交叉路口实现避碰协调算法的仿真示例,对该方法的避碰协调过程进行了说明,并对仿真结果进行了分析,同时对仿真中机器人和目标位置的空间关系给出了合理的假设。  相似文献   

5.
Detecting Loop Closure with Scene Sequences   总被引:1,自引:0,他引:1  
This paper is concerned with “loop closing” for mobile robots. Loop closing is the problem of correctly asserting that a robot has returned to a previously visited area. It is a particularly hard but important component of the Simultaneous Localization and Mapping (SLAM) problem. Here a mobile robot explores an a-priori unknown environment performing on-the-fly mapping while the map is used to localize the vehicle. Many SLAM implementations look to internal map and vehicle estimates (p.d.fs) to make decisions about whether a vehicle is revisiting a previously mapped area or is exploring a new region of workspace. We suggest that one of the reasons loop closing is hard in SLAM is precisely because these internal estimates can, despite best efforts, be in gross error. The “loop closer” we propose, analyze and demonstrate makes no recourse to the metric estimates of the SLAM system it supports and aids---it is entirely independent. At regular intervals the vehicle captures the appearance of the local scene (with camera and laser). We encode the similarity between all possible pairings of scenes in a “similarity matrix”. We then pose the loop closing problem as the task of extracting statistically significant sequences of similar scenes from this matrix. We show how suitable analysis (introspection) and decomposition (remediation) of the similarity matrix allows for the reliable detection of loops despite the presence of repetitive and visually ambiguous scenes. We demonstrate the technique supporting a SLAM system driven by scan-matching laser data in a variety of settings. Some of the outdoor settings are beyond the capability of the SLAM system itself in which case GPS was used to provide a ground truth. We further show how the techniques can equally be applied to detect loop closure using spatial images taken with a scanning laser. We conclude with an extension of the loop closing technique to a multi-robot mapping problem in which the outputs of several, uncoordinated and SLAM-enabled robots are fused without requiring inter-vehicle observations or a-priori frame alignment.  相似文献   

6.
Joint simultaneous localization and mapping (SLAM) constitutes the basis for cooperative action in multi‐robot teams. We designed a stereo vision‐based 6D SLAM system combining local and global methods to benefit from their particular advantages: (1) Decoupled local reference filters on each robot for real‐time, long‐term stable state estimation required for stabilization, control and fast obstacle avoidance; (2) Online graph optimization with a novel graph topology and intra‐ as well as inter‐robot loop closures through an improved submap matching method to provide global multi‐robot pose and map estimates; (3) Distribution of the processing of high‐frequency and high‐bandwidth measurements enabling the exchange of aggregated and thus compacted map data. As a result, we gain robustness with respect to communication losses between robots. We evaluated our improved map matcher on simulated and real‐world datasets and present our full system in five real‐world multi‐robot experiments in areas of up 3,000 m2 (bounding box), including visual robot detections and submap matches as loop‐closure constraints. Further, we demonstrate its application to autonomous multi‐robot exploration in a challenging rough‐terrain environment at a Moon‐analogue site located on a volcano.  相似文献   

7.
8.
《Advanced Robotics》2013,27(3-4):233-265
Simultaneous localization and map-building (SLAM) continues to draw considerable attention in the robotics community due to the advantages it can offer in building autonomous robots. It examines the ability of an autonomous robot starting in an unknown environment to incrementally build an environment map and simultaneously localize itself within this map. Recent advances in computer vision have contributed a whole class of solutions for the challenge of SLAM. This paper surveys contemporary progress in SLAM algorithms, especially those using computer vision as main sensing means, i.e., visual SLAM. We categorize and introduce these visual SLAM techniques with four main frameworks: Kalman filter (KF)-based, particle filter (PF)-based, expectation-maximization (EM)-based and set membership-based schemes. Important topics of SLAM involving different frameworks are also presented. This article complements other surveys in this field by being current as well as reviewing a large body of research in the area of vision-based SLAM, which has not been covered. It clearly identifies the inherent relationship between the state estimation via the KF versus PF and EM techniques, all of which are derivations of Bayes rule. In addition to the probabilistic methods in other surveys, non-probabilistic approaches are also covered.  相似文献   

9.
SLAM 问题中机器人定位误差分析与控制   总被引:6,自引:1,他引:5  
移动机器人同步定位与建图问题 (Simultaneous localization and mapping, SLAM) 是机器人能否在未知环境中实现完全自主的关键问题之一. 其中, 机器人定位估计对于保持地图的一致性非常重要. 本文分析了 SLAM 问题中机器人定位误差的收敛特性. 分析表明随着机器人的运动,机器人定位误差总体上逐渐增大; 在完全未知环境中无法预测机器人定位误差的上限. 根据理论分析, 本文提出了一种控制机器人定位误差在单位距离上增长速度的算法. 该算法通过搜索获得满足定位误差限制的最佳的机器人运动速度, 从而控制机器人定位误差的增长.  相似文献   

10.
针对卫星信号受阻,无预设基础设施(定位基站、地标等)环境下多机器人间的相对定位问题,提出了一种基于单个超宽带(ultra-wideband, UWB)融合里程计的多机器人相对定位方法。该方法利用滑动窗口截取历史时刻的多组机器人间测距信息与里程计预测的机器人位姿,构建非线性最小二乘问题,实现机器人间的相对位姿估计;利用扩展卡尔曼滤波算法估计里程计协方差,并将其以加权的方式运用于非线性优化,抑制滑动窗口内里程计累积误差对定位结果的影响;最后,利用图优化算法融合里程计与非线性优化获得的相对位姿作进一步优化,抑制UWB测量误差影响,以获得稳定的相对定位结果。实验结果表明,在6 m×12 m的真实测试环境中,所提方法能够获得0.32 m的相对位置精度和4.16°的相对角度精度,相比于现有多机器人相对定位方案,该方法具有高精度、低成本、部署简单以及定位稳定的优点。  相似文献   

11.
In this paper, we propose a real-time vision-based localization approach for humanoid robots using a single camera as the only sensor. In order to obtain an accurate localization of the robot, we first build an accurate 3D map of the environment. In the map computation process, we use stereo visual SLAM techniques based on non-linear least squares optimization methods (bundle adjustment). Once we have computed a 3D reconstruction of the environment, which comprises of a set of camera poses (keyframes) and a list of 3D points, we learn the visibility of the 3D points by exploiting all the geometric relationships between the camera poses and 3D map points involved in the reconstruction. Finally, we use the prior 3D map and the learned visibility prediction for monocular vision-based localization. Our algorithm is very efficient, easy to implement and more robust and accurate than existing approaches. By means of visibility prediction we predict for a query pose only the highly visible 3D points, thus, speeding up tremendously the data association between 3D map points and perceived 2D features in the image. In this way, we can solve very efficiently the Perspective-n-Point (PnP) problem providing robust and fast vision-based localization. We demonstrate the robustness and accuracy of our approach by showing several vision-based localization experiments with the HRP-2 humanoid robot.  相似文献   

12.
Abstract

In this article, the problem of real-time robot exploration and map building (active SLAM) is considered. A single stereo vision camera is exploited by a fully autonomous robot to navigate, localize itself, define its surroundings, and avoid any possible obstacle in the aim of maximizing the mapped region following the optimal route. A modified version of the so-called cognitive-based adaptive optimization algorithm is introduced for the robot to successfully complete its tasks in real time and avoid any local minima entrapment. The method’s effectiveness and performance were tested under various simulation environments as well as real unknown areas with the use of properly equipped robots.  相似文献   

13.
Emerged as salient in the recent home appliance consumer market is a new generation of home cleaning robot featuring the capability of Simultaneous Localization and Mapping (SLAM). SLAM allows a cleaning robot not only to self-optimize its work paths for efficiency but also to self-recover from kidnappings for user convenience. By kidnapping, we mean that a robot is displaced, in the middle of cleaning, without its SLAM aware of where it moves to. This paper presents a vision-based kidnap recovery with SLAM for home cleaning robots, the first of its kind, using a wheel drop switch and an upward-looking camera for low-cost applications. In particular, a camera with a wide-angle lens is adopted for a kidnapped robot to be able to recover its pose on a global map with only a single image. First, the kidnapping situation is effectively detected based on a wheel drop switch. Then, for an efficient kidnap recovery, a coarse-to-fine approach to matching the image features detected with those associated with a large number of robot poses or nodes, built as a map in graph representation, is adopted. The pose ambiguity, e.g., due to symmetry is taken care of, if any. The final robot pose is obtained with high accuracy from the fine level of the coarse-to-fine hierarchy by fusing poses estimated from a chosen set of matching nodes. The proposed method was implemented as an embedded system with an ARM11 processor on a real commercial home cleaning robot and tested extensively. Experimental results show that the proposed method works well even in the situation in which the cleaning robot is suddenly kidnapped during the map building process.  相似文献   

14.
Autonomous exploration under uncertain robot location requires the robot to use active strategies to trade-off between the contrasting tasks of exploring the unknown scenario and satisfying given constraints on the admissible uncertainty in map estimation. The corresponding problem, namely active SLAM (Simultaneous Localization and Mapping) and exploration, has received a large attention from the robotic community for its relevance in mobile robotics applications. In this work we tackle the problem of active SLAM and exploration with Rao-Blackwellized Particle Filters. We propose an application of Kullback-Leibler divergence for the purpose of evaluating the particle-based SLAM posterior approximation. This metric is then applied in the definition of the expected information from a policy, which allows the robot to autonomously decide between exploration and place revisiting actions (i.e., loop closing). Extensive tests are performed in typical indoor and office environments and on well-known benchmarking scenarios belonging to SLAM literature, with the purpose of comparing the proposed approach with the state-of-the-art techniques and to evaluate the maturity of truly autonomous navigation systems based on particle filtering.  相似文献   

15.
Currently when path planning is used in SLAM it is to benefit SLAM only, with no mutual benefit for path planning. Furthermore, SLAM algorithms are generally implemented and modified for individual heterogeneous robotic platforms without autonomous means of sharing navigation information. This limits the ability for robot platforms to share navigation information and can require heterogeneous robot platforms to generate individual maps within the same environment. This paper introduces Learned Action SLAM, which for the first time autonomously combines path-planning with SLAM such that heterogeneous robots can share learnt knowledge through Learning Classifier Systems (LCS). This is in contrast to Active SLAM, where path-planning is used to benefit SLAM only. Results from testing LA-SLAM on robots in the real world have shown; promise for use on teams of robots with various sensor morphologies, implications for scaling to associated domains, and ability to share maps taken from less capable to more advanced robots.  相似文献   

16.
Simultaneous localization and mapping (SLAM) in unknown GPS‐denied environments is a major challenge for researchers in the field of mobile robotics. Many solutions for single‐robot SLAM exist; however, moving to a platform of multiple robots adds many challenges to the existing problems. This paper reviews state‐of‐the‐art multiple‐robot systems, with a major focus on multiple‐robot SLAM. Various issues and problems in multiple‐robot SLAM are introduced, current solutions for these problems are reviewed, and their advantages and disadvantages are discussed.  相似文献   

17.
The master-followed multiple robots interactive cooperation simultaneous localization and mapping (SLAM) schemes were designed in this paper, which adapts to search and rescue (SAR) cluttered environments. In our multi-robots SLAM, the proposed algorithm estimates each of multiple robots’ current local sub-map, in this occasion, a particle represents each of moving multi-robots, and simultaneously, also represents the pose of a motion robot. The trajectory of the robot’s movement generated a local sub-map; the sub-maps can be looked on as the particles. Each robot efficiently forms a local sub-map; the global map integrates over these local sub-maps; identifying SAR objects of interest, in which, each of multi-robots acts as local-level features collector. Once the object of interest (OOI) is detected, the location in the global map could be determined by the SLAM. The designed multi-robot SLAM architecture consists of PC remote control center, a master robot, and multi-followed robots. Through mobileRobot platform, the master robot controls multi-robots team, the multiple robots exchange information with each other, and then performs SLAM tasks; the PC remote control center can monitor multi-robot SLAM process and provide directly control for multi-robots, which guarantee robots conducting safety in harsh SAR environments. This SLAM method has significantly improved the objects identification, area coverage rate and loop-closure, and the corresponding simulations and experiments validate the significant effects.  相似文献   

18.
This paper examines the problem of cooperative localization for the case of large groups of mobile robots. A Kalman filter estimator is implemented and tested for this purpose. The focus of this paper is to examine the effect on localization accuracy of the number N of participating robots and the accuracy of the sensors employed. More specifically, we investigate the improvement in localization accuracy per additional robot as the size of the team increases. Furthermore, we provide an analytical expression for the upper bound on the positioning uncertainty increase rate for a team of N robots as a function of N, the odometric and orientation uncertainty for the robots, and the accuracy of a robot tracker measuring relative positions between pairs of robots. The analytical results derived in this paper are validated both in simulation and experimentally for different test cases.  相似文献   

19.
This work addresses the problem of performing large scale SLAM (Simultaneous Localization And Mapping) with satellite stereo imagery for terrain mapping, using a constant time estimation approach. The approach adopts the relative bundle adjustment approach (RBA) and integrates with it a particle-based framework to obtain a constant time probabilistic pose estimation model. The approach further uses a concept of fuzzy landmark-based similarity between poses to make common landmark identification across poses easier, especially when landmarks are sparsely encountered. In order to achieve robustness under varying environmental conditions, we use Speeded Up Robust Features (SURF) for computing spatial and temporal landmark correspondences across time steps. Finally, we use a fast loop closure approach to reduce drifts and obtain global pose estimates. For simulation study, the robot images are cropped from stereo-pair satellite images at different time steps incorporating errors in the robot’s control information. Extensive experimentation has been carried out to study the robot trajectories and the determination of Digital Elevation Model (DEM), with encouraging findings. We have also compared our work with 6D FastSLAM 2.0 (Thrun et al. (2005)) as well as Relative SLAM (RSLAM) due to Mei et al. (2010).  相似文献   

20.
林辉灿  吕强  王国胜  张洋  梁冰 《计算机应用》2017,37(10):2884-2887
移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、ElasticFusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号