首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid softening of kiwi fruit while in storage at 0°C limits the marketing period for this crop and contributes to economic loss. The time required to bring fruit to optimum storage temperature is affected by delays between harvest and placing fruit in the cooling facility and by the completeness of cooling. Incomplete cooling of fruit in commercial forced-air coolers results in overall above-optimal average fruit temperatures for undesirable lengths of time and also results in a wide range of temperature among individual fruits. The half cooling time for palletized kiwi fruit packed in wooden trays with liners was 7 h in the coolers tested; thus seven-eighths cooling required 21 h. Delays of 24 h or more before the start of cooling accelerated the softening of fruit, enhanced soluble solids content, and increased the incidence of rotting and shrivelling during storage.  相似文献   

2.
A single-stage vapour absorption refrigeration system (VARS) is tested with monochlorodifluoromethane (HCF22) as refrigerant and different absorbents: dimethylether of tetraethylene glycol (DMETEG) and dimethyl acetamide (DMA). The influence of generator temperatures in the range 75–95°C, which represents low-grade heat sources, is studied. Cooling water temperatures were varied between 20 and 30°C. Two cases of cooling water flow paths are considered, i.e. water entering either absorber or condenser, which are connected in series. For HCFC22-DMETEG, COP values in the range 0.2–0.36 and evaporator temperatures between 0 and 10°C are obtained. For HCF22-DMA, COP values in the range 0.3–0.45 and evaporator temperatures between −10 and 10°C are obtained. It is observed that HCFC22-DMETEG can work at lower heat source temperatures than HCFC22-DMA. However, at the same operating conditions HCFC22-DMA is better from the viewpoints of circulation ratio and COP. Experiments also show that at low heat source temperature, cooling water temperature has strong influence on circulation ratio but does not affect COP significantly. Preferably, cooling water should first flow through the condenser and then through the absorber in order to achieve improved overall performance.  相似文献   

3.
Peach fruit (Prunus persica L. cv. ‘Miraflores’) harvested at the firm-ripe stage, treated or not with 2 g l−1 iprodione, were cooled or not at 1°C and ripened at 15 or 20°C and 95% RH for 10 days. During ripening, weight loss, fungal development and changes in quality parameters (firmness, soluble solids content, titratable acidity, pH and ground and flesh color), and carbon dioxide and ethylene production were monitored. Cooling alone or combined with iprodione avoided Rhizopus nigricans decay during ripening at either ripening temperatures. A skin damage not previously reported on fungicide treated peach was observed at 20°C. Cooled fruit ripened at 15°C showed an anomalous respiration rate and ethylene production after the climacteric peak, a loss of firmness and a drop in titratable acidity after 7 days of storage, and reduced endo-polygalacturonase activity in presence of continuous pectinmethylesterase activity during the first week. Cooling before ripening at 20°C led to the best flavor without excessive total losses. These results helped in the optimization of warming cycles during cold storage used to avoid chilling injuries development on peaches.  相似文献   

4.
Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and utilization of CFCs and HCFCs. In this paper, a dual-mode silica gel–water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. This adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. The drawback of this operational mode is its poor efficiency in terms of cooling capacity and COP. Simulation results show that the optimum COP values are obtained at driving source temperatures between 50 and 55 °C in three-stage mode, and between 80 and 85 °C in single-stage, multi-bed mode.  相似文献   

5.
The paper presents a new desiccant cooling cycle to be integrated in residential mechanical ventilation systems. The process shifts the air treatment completely to the return air side, so that the supply air can be cooled by a heat exchanger. Purely sensible cooling is an essential requirement for residential buildings with no maintenance guarantee for supply air humidifiers. As the cooling power is generated on the exhaust air side, the dehumidification process needs to be highly efficient to provide low supply air temperatures. Solid rotating desiccant wheels have been experimentally compared with liquid sorption systems using contact matrix absorbers and cross flow heat exchangers. The best dehumidification performance at no temperature increase was obtained in an evaporatively cooled heat exchanger with sprayed lithium chloride solution. Up to 7 g kg−1 dehumidification could be reached in an isothermal process, although the surface wetting of the first prototype was low. The process then provides inlet air conditions below 20 °C for the summer design conditions of 32 °C, 40% relative humidity. With air volume flow rates of 200 m3 h−1 the system can provide 886 W of cooling power.A theoretical model for both the contact absorber and the cross flow system has been developed and validated against experimental data for a wide range of operating conditions. A simulation study identified the optimisation potential of the system, if for example the surface wetting of the liquid desiccant can be improved.  相似文献   

6.
Rapid softening of kiwi fruit while in storage at 0°C limits the marketing period for this crop and contributes to economic loss. The time required to bring fruit to optimum storage temperature is affected by delays between harvest and placing fruit in the cooling facility and by the completeness of cooling. Incomplete cooling of fruit in commercial forced-air coolers results in overall above-optimal average fruit temperatures for undesirable lengths of time and also results in a wide range of temperature among individual fruits. The half cooling time for palletized kiwi fruit packed in wooden trays with liners was 7 h in the coolers tested; thus seven-eighths cooling required 21 h. Delays of 24 h or more before the start of cooling accelerated the softening of fruit, enhanced soluble solids content, and increased the incidence of rotting and shrivelling during storage.  相似文献   

7.
The prototype of a novel silica gel–water adsorption chiller is built and its performance is tested in detail. The experimental results show that the refrigerating capacity (RC) and COP of the chiller are 7.15 and 0.38 kW, respectively, when the hot water temperature is 84.8 °C, the cooling water temperature is 30.6 °C, and the chilled water outlet temperature is 11.7 °C. The RC will reach 6 kW under the condition of 65 °C hot water temperature, 30.5 °C cooling water temperature and 17.6 °C chilled water temperature. The results confirm that this kind of adsorption chiller is an effective refrigerating machine though its performance is not as fine as the prediction results. Also it is well effectively driven by a low-grade heat source. Therefore, its applications to the low-grade heat source are much attractive.  相似文献   

8.
The aim of this study was to assess the impact of mist-chilling on high-grade strawberry post-harvest quality (Cultivars “Gariguette” and “Mara des Bois”). Strawberries were chilled at 2 °C using three processes: air blast chilling at 0.3 m s−1 or 1 m s−1 and mist-chilling at 1 m s−1. After chilling, fruits were submitted to different distribution chains characterised by different handling conditions and storage temperatures (2 °C or 7 °C) and by a 12 h retailing step at 20 °C. Strawberry quality was assessed by measuring 7 parameters: weight loss, commercial loss, firmness, sugar content, acidity, colour and sensory quality. Compared to air-chilling, mist-chilling did not reduce chilling time but it reduced weight loss by 20–40%. Mist-chilling had no detrimental effect on commercial loss defined as the percentage of fruit more than 1/3 of surface affected. It did not induce any major changes on strawberry quality. Temperature fluctuations undergone during cold storage and retailing had a detrimental effect on weight loss. The beneficial effect of packaging on weight loss was confirmed.  相似文献   

9.
10.
A theoretical study of a novel regenerative ejector refrigeration cycle   总被引:1,自引:0,他引:1  
There has been a demand for developments of the ejector refrigeration systems using low grade thermal energy, such as solar energy and waste heat. In this paper, a novel regenerative ejector refrigeration cycle was described, which uses an auxiliary jet pump and a conventional regenerator to enhance the performance of the novel cycle. The theoretical analysis on the performance characteristics was carried out for the novel cycle with the refrigerant R141b. Compared with the conventional cycle, the simulation results show that the coefficient of performance (COP) of the novel cycle increases, respectively, by from 9.3 to 12.1% when generating temperature is in a range of 80–160 °C, the condensing temperature is in a range of 35–45 °C and the evaporating temperature is fixed at 10 °C. Especially due to the enhanced regeneration with increasing the pump outlet pressure, the improvement of COP of the novel cycle is approached to 17.8% compared with that in the conventional cycle under the operating condition that generating temperature is 100 °C, condensing temperature is 40 °C and evaporating temperature is 10 °C. Therefore, the characteristics of the novel cycle performance show its promise in using low grade thermal energy for the ejector refrigeration system.  相似文献   

11.
A newly developed adsorption water chiller is introduced and tested. In the new adsorption refrigeration system, there are no refrigerant valves, the problem of mass transfer resistance resulting in pressure drop along refrigerant passage in conventional systems when methanol or water is used as refrigerant can be absolutely solved. Silica-gel–water is used as working pair and mass recovery-like process is adopted in order to use low temperature heat source ranging from 70 to 85 °C effectively. The experiment results demonstrate that the chiller (26.4 kg silica-gel in each adsorber) has a cooling capacity of 2–7.3 kW and COP ranging 0.2–0.42 according to different evaporating temperatures. Based on the experimental tests of the first prototype, the second prototype is designed and tested; the experimental data demonstrate that the chiller performance has been greatly improved, with a heat source temperature of 80 °C, a COP over 0.5 and cooling capacity of 9 kW has been achieved at evaporating temperature of 13 °C.  相似文献   

12.
Chilled foods are stored for periods of between a few hours and many days in domestic refrigerators. However, there are little published data on the temperature performance of domestic refrigerators within the home. A survey has been taken in 252 households in the UK and some of the results are presented in this paper. The refrigerators investigated in the survey were found to have an overall mean temperature of approximately 6°C, which ranged from 11.4 to −0.9°C. Temperature ranges over the whole refrigerator varied from 4.5 to 30.5°C with 3.7% of the total being warmer than 20°C. On average 29.9% of refrigerators operated below 5°C and 66.7% operated below 7°C. Few refrigerators (7.3%) ran, on average, above 9°C. No refrigerator characteristic (apart from type) could be related to temperatures or temperature distribution in the refrigerators investigated.  相似文献   

13.
Energy and exergy models for ideal adsorption cycles with isothermal beds and no mass recovery are developed to predict the limits to COP enhancement using thermal regeneration. The models are applied to compare the performance of zeolite–water and silica gel–water adsorbent–refrigerant pairs over a range of maximum bed temperatures. The thermodynamic consistencies of several alternate adsorption property assumptions are quantified. Differences in adsorption characteristics between zeolite–water and silica gel–water result in a significantly larger potential to enhance COP by implementing thermal regeneration for zeolite–water. Based on COP, the zeolite–water pair is preferred when both thermal regeneration and a high temperature thermal energy source (>150 °C) are used, while the silica gel–water pair is preferred when thermal regeneration is not used and/or a low temperature thermal energy source (<100 °C) is used.  相似文献   

14.
CO2 is environmentally friendly, safe and more suitable to ejector refrigeration cycle than to vapor compression cycle. Supersonic two-phase flow of CO2 in the diverging sections of rectangular converging–diverging nozzles was investigated. The divergence angles with significant variation of decompression were 0.076°, 0.153°, 0.306° and 0.612°. This paper presents experimental decompression phenomena which can be used in designing nozzles and an assessment of Isentropic Homogeneous Equilibrium (IHE). Inlet conditions around 6–9 MPa, 20–37 °C were used to resemble ejector nozzles of coolers and heat pumps. For inlet temperature around 37 °C, throat decompression boiling from the saturated liquid line, supersonic decompression and IHE solution were obtained for the two large divergence angles. For divergence angles larger than 0.306°, decompression curves for inlet temperature above 35 °C approached IHE curves. For divergence angles smaller than 0.306° or for nozzles with inlet temperature below 35 °C, IHE had no solution.  相似文献   

15.
We experimentally show that for the same heat exchanger inventory allocation, a four-bed adsorption chiller delivers a 12% higher ultimate cooling capacity than its two-bed counterpart. In addition it delivers a significantly improved quality of instantaneous cooling than a two-bed chiller at the same cooling capacity. The COP-enhancing feature of a passive heat recovery scheme that does not involve additional pumping action or valves is experimentally proven. It improves the COPs of a two-bed chiller and a four-bed chiller by as much as 38 and 25%, respectively, without any effect on their cooling capacities. The highest COPs achieved with a two-bed and four-bed chillers are 0.46±0.02 and 0.45±0.02, respectively. These are measured at a hot-water inlet temperature of 85 °C, cooling-water inlet temperature of 29.4 °C and chilled-water inlet temperature of 12.2 °C.  相似文献   

16.
This article experimentally investigates the thermal performance of a thermal battery used in the ice storage air-conditioning system as a subcooler. The thermal battery utilizes the superior heat transfer characteristics of two-phase closed thermosyphon and eliminates the drawbacks found in convectional energy storage systems. Experimental investigations are first conducted to study the thermal behavior of thermal battery under different charge temperatures (−5 °C to −9 °C) in which water is used as the energy storage material. This study also examines the thermal performance of the subcooled ice storage air conditioner under different cooling loads. Experimental data of temperature variation of water, ice fraction, refrigerant mass flow rate and coefficient of performance (COP) are obtained. The results show that supercooling phenomenon appears in the water and it can be ended when the charge temperature is lower than −6 °C. The system gives 28% more cooling capacity and 8% higher COP by the contribution of the thermal battery used as a subcooler.  相似文献   

17.
Emerging triple-effect LiBr–water absorption chillers operate at higher temperatures and pressures than traditional double-effect chillers. However, there is not enough data about thermodynamic properties of LiBr–water solutions at such high temperatures. Using recently measured data of vapor pressure and heat capacity, we have developed the equations which can calculate the vapor pressure, enthalpy and entropy of LiBr solutions at such high temperatures. The developed equations are valid from concentrations of 40–65 wt.% and also from temperatures of 40–210°C. These equations will be very helpful for the modeling and design of triple-effect LiBr–water chillers.  相似文献   

18.
This paper discusses the conservation of energy in a cogeneration system. A steam power cycle (Rankine) produces electrical power 2 MW and steam is bleeded off from the turbine at 7 bar to warm a factory or units of buildings during the winter or to supply a steam ejector refrigeration cycle to air-conditioning the same area during the summer. In the summer this system can be as alternative solution instead of absorption. Certainly the ejector refrigeration unit is more economical than absorption unit. The ratio of electrical power/heat is varied into the region (0.1–0.4) and the evaporator temperature of the ejector cycle is varied into the region (10–16 °C). A computer program has been developed for the study of performance parameters of the cogeneration system.  相似文献   

19.
A novel experimental investigation of a solar cooling system in Madrid   总被引:5,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

20.
The paper describes an experimental plant aimed at simulating and verifying the performances of a single-stage H2O–LiBr absorption machine. The machine is water cooled and it is supplied by hot water produced by an electrical boiler; it is possible to simulate different service conditions by varying the temperatures and the flow rate of water in the external circuits. Measurement facilities allow to record in real time all the main operating parameters of internal and external circuits (temperatures, pressures and flow rates). The paper illustrates the characteristics of the machine and of the plant and the results of various experimental campaigns. In particular, the acquisitions on the plant have tested different service conditions by varying the flow rate and the temperature of the supplying hot water; the energy and energy performances of the plant are presented and compared with data from literature and from a simulation code developed for the plant.The results show that the absorption machine can work, with acceptable efficiency, with input temperatures of about 65–70 °C; this result is interesting for a future supply of the machine with solar energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号