首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a low-grade sustainable heat source, the human body provides a great driving force for converting heat into electric energy using thermoelectric materials, which can effectively power wearable electronics. However, the low thermoelectric conversion efficiency is not sufficient to achieve energy autonomy in the operation of wearable devices. Herein, wearable bacterial cellulose (BC) organogel-based thermoelectrochemical cells (TECs) are designed and prepared with K4Fe(CN)6/K3Fe(CN)6 as a redox couple. The addition of propylene glycol significantly improves the mechanical properties of the TECs and drives K4Fe(CN)6 to gradually crystallize, resulting in the concentration gradient of redox ions, which significantly enhanced the heat-to-electricity conversion efficiency (from 1.27 to 2.30 mV K−1), proving that they are promising candidates for powering flexible and wearable devices in various application scenarios. The TECs are further assembled into self-powered strain sensors, which can detect the movement of the human body under various tensions and pressures in real time with high sensitivity. This indicates that the BC organogel-based TECs for self-powered strain sensors have great application potential in the wearable field.  相似文献   

2.
The advent of self-powered wearable electronics will revolutionize the fields of smart healthcare and sports monitoring. This technological advancement necessitates more stringent design requirements for triboelectric materials. The triboelectric aerogels must enhance their mechanical properties to address the issue of structural collapse in real-world applications. This study fabricates stiff nanocellulosic triboelectric aerogels with multiscale structures induced by the Hofmeister effect. The aggregation and crystallization of polymer molecular chains are enhanced by the Hofmeister effect, while ice crystal growth imparts a porous structure to the aerogel at the micron scale. Therefore, the triboelectric aerogel exhibits exceptional stiffness, boasting a Young's modulus of up to 142.9 MPa and a specific modulus of up to 340.6 kN m kg–1, while remaining undeformed even after supporting 6600 times its weight. Even after withstanding an impact of 343 kPa, highly robust wearable self-powered sensors fabricated with triboelectric aerogels remain operational. Additionally, the self-powered sensor is capable of accurately detecting human movements, particularly in abnormal fall postures detection. This study provides considerable research and practical value for promoting material design and broadening application scenarios for self-powered wearable electronics.  相似文献   

3.
The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.  相似文献   

4.
Accompanying the boom in multifunctional wearable electronics, flexible, sustainable, and wearable power sources are facing great challenges. Here, a stretchable, washable, and ultrathin skin-inspired triboelectric nanogenerator (SI-TENG) to harvest human motion energy and act as a highly sensitive self-powered haptic sensor is reported. With the optimized material selections and structure design, the SI-TENG is bestowed with some merits, such as stretchability ( ≈ 800%), ultrathin ( ≈ 89 µ m), and light-weight ( ≈ 0.23 g), which conformally attach on human skin without disturbing its contact. A stretchable composite electrode, which is formed by homogenously intertwining silver nanowires (AgNWs) with thermoplastic polyurethane (TPU) nanofiber networks, is fabricated through synchronous electrospinning of TPU and electrospraying of AgNWs. Based on the triboelectrification effect, the open-circuit voltage, short-circuit current, and power density of the SI-TENG with a contact area of 2 × 2 cm2 and an applied force of 8 N can reach 95 V, 0.3 µ A, and 6 mW m−2, respectively. By integrating the signal-processing circuits, the SI-TENG with excellent energy harvesting and self-powered sensing capability is demonstrated as a haptic sensor array to detect human actions. The SI-TENG exhibits extensive applications in the fields of human–machine interface and security systems.  相似文献   

5.
2D Ru oxide nanosheets (NSs) with optically punched nanoholes are synthesized and integrated on a flexible heating substrate, i.e., silver nanowire (Ag NW)‐embedded colorless polyimide (cPI) film, for application in wearable chemical sensors. Multiple discrete pores on the sub‐5‐nm scale are formed on the basal planes of Ru oxide NSs by irradiation of intense pulsed light. The chemical sensing characteristic of the porous Ru oxide NSs toward nitrogen dioxide (NO2) is investigated under controlled temperatures by applying DC voltage to the Ag NW‐embedded cPI film. The improved NO2 responding and recovery kinetics are achieved using the porous Ru oxide NSs with sensitivity of 1.124% at 20 ppm at a film temperature of 80.3 °C. A wireless patch‐type sensor module is developed to demonstrate wearable sensing of NO2 using the Ru oxide NSs on Ag NW‐embedded cPI heating film. This work paved the new way for application of atomically thin and porous Ru oxide NSs in chemical sensors, which can detect hazardous species in real time.  相似文献   

6.
Flexible triboelectric nanogenerators (TENGs) with multifunctional sensing capabilities offer an elegant solution to address the growing energy supply challenges for wearable smart electronics. Herein, a highly stretchable and durable electrode for wearable TENG is developed using ZIF-8 as a reinforcing nanofiller in a hydrogel with LiCl electrolyte. ZIF-8 nanocrystals improve the hydrogel's mechanical properties by forming hydrogen bonds with copolymer chains, resulting in 2.7 times greater stretchability than pure hydrogel. The hydrogel electrode is encapsulated by microstructured silicone layers that act as triboelectric materials and prevent water loss from the hydrogel. Optimized ZIF-8-based hydrogel electrodes enhance the output performance of TENG through the dynamic balance of electric double layers (EDLs) during contact electrification. Thus, the as-fabricated TENG delivers an excellent power density of 3.47 Wm2, which is 3.2 times higher than pure hydrogel-based TENG. The developed TENG can scavenge biomechanical energy even at subzero temperatures to power small electronics and serve as excellent self-powered pressure sensors for human-machine interfaces (HMIs). The nanocomposite hydrogel-based TENG can also function as a wearable biomotion sensor, detecting body movements with high sensitivity. This study demonstrates the significant potential of utilizing ZIF-8 reinforced hydrogel as an electrode for wearable TENGs in energy harvesting and sensor technology.  相似文献   

7.
Recent results of the autonomous sensor research program HUMAN++ will be summarized in this paper. The research program aims to achieve highly miniaturized and (nearly) autonomous sensor systems that assist our health and comfort. Although the application examples are dedicated to human monitoring/assistance, the necessary technology development for this program is generic and can serve many wireless sensor applications. This multi-disciplinary program combines research on wireless ultra-low-power communications, research on 2D/3D integration and packaging platforms, energy scavenging techniques, as well as low-power and ultra-low-power sensor circuit design. An example sensor system is the wearable wireless EEG system.  相似文献   

8.
Advanced wearable self-powered energy systems that simultaneously achieve energy harvesting and energy storage offer exciting opportunities for flexible electronics, information communication, and even intelligent environmental monitoring. However, building and integrating synergistic energy storage from energy harvester unit into a single power source is highly challenging. Herein, a unique 3D printing-directed synergistic design of high-performance zinc-ion hybrid capacitors (ZIHCs) and triboelectric nanogenerators (TENGs) is proposed for the all-in-one self-powered wearable energy wristband. With advanced ink design, high-performance flexible ZIHCs are built up as the excellent energy storage unit with remarkable electrochemical behaviors and synergistic matching from TENGs. An exceptional device capacitance of 239.0 mF cm−2, moderate potential window, high-rate capability, robust cycling stability, and excellent flexibility are achieved. Intrinsic charge storage process is also revealed, further demonstrating the outstanding electrochemical stability of the in-plane flexible ZIHCs. Moreover, using 3D printing-directed synergistic design, an advanced all-in-one self-powered energy wristband is developed, where an efficient harvesting of body vibration/movement energy and a reliable storage of harvested energy are simultaneously realized, representing a substantial step toward future practical applications in portable and wearable electronics.  相似文献   

9.
Through harvesting energy from the environment or human body, self-power wearable electronics have an opportunity to break through the limitations of battery supply and achieving long-term continuous operation. Here, a wireless wearable monitoring system driven entirely by body heat is implemented. Based on the principle of maximizing heat utilization, while optimizing internal resistance and heat dissipation, the stretchable TEG improves the power density of previous similar devices from only a few microwatts per square centimeter to tens and makes it possible to continuously drive wireless wearable electronic systems. Furthermore, ceaseless self-power energy gives wearable electronics unparalleled continuous working ability, which can realize the tracking and monitoring of biochemical and physiological indicators at different time scale. A practical system demonstrates the ability to real-time monitor heart rate, sweat ingredient and body motion at a high sampling rate. This study marks an important advance of self-powered wearable electronics for wirelessly real-time healthy monitoring.  相似文献   

10.
Van der Waals p–n junctions of 2D materials present great potential for electronic devices due to the fascinating properties at the junction interface. In this work, an efficient gas sensor based on planar 2D van der Waals junctions is reported by stacking n‐type and p‐type atomically thin MoS2 films, which are synthesized by chemical vapor deposition (CVD) and soft‐chemistry route, respectively. The electrical conductivity of the van der Waals p–n junctions is found to be strongly affected by the exposure to NO2 at room temperature (RT). The MoS2 p–n junction sensor exhibits an outstanding sensitivity and selectivity to NO2 at RT, which are unavailable in sensors based on individual n‐type or p‐type MoS2. The sensitivity of 20 ppm NO2 is improved by 60 times compared to a p‐type MoS2 sensor, and an extremely low limit of detection of 8 ppb is obtained under ultraviolet irradiation. Complete and very fast sensor recovery is achieved within 30 s. These results are superior to most of the previous reports related to NO2 detection. This work establishes an entirely new sensing platform and proves the feasibility of using such materials for the high‐performance detection of gaseous molecules at RT.  相似文献   

11.
The Internet of Things (IoT) presents opportunities to address a variety of systemic, metabolic healthcare issues. Cardiovascular disease and diabetes are among the greatest contributors to premature death worldwide. Wireless wearable continuous monitoring systems such as ECG sensors connected to the IoT can greatly decrease the risk of death related to cardiac issues by providing valuable long-term information to physicians, as well as immediate contact with emergency services in the event of a heart attack or stroke. In this report we discuss the fabrication, characterization and validation of composite fabric ECG sensors made from Nylon® coated with reduced graphene oxide (rGOx) as part of a self-powered wearable IoT sensor. We utilize an electronic probing station to measure electrical properties, take live ECG data to measure signal reliability, and provide detailed surface characterization through scanning electron microscopy. Finally, bonding between the layers of the composite and between composite and the Nylon® is analyzed by Fourier transform Infrared spectroscopy. Furthermore, a low power analog front end circuit designed in 65 nm CMOS process is presented to interface the sensor with a system on chip used in a wearable IoT healthcare device.  相似文献   

12.
Organic–inorganic hybrid gas sensors can offer outstanding performance in terms of selectivity and sensitivity towards single gas species. The enormous variety of organic functionalities enables novel flexibility of active sensor surfaces compared to commonly used pure inorganic materials, but goes along with an increase of system complexity that usually hinders a predictable sensor design. In this work, an ultra‐selective NO2 sensor is realized based on self‐assembled monolayer (SAM)‐modified semiconductor nanowires (NWs). The crucial chemical and electronic parameters for an effective interaction between the sensor and different gas species are identified using density functional theory simulations. The theoretical findings are consistent with the experimentally observed extraordinary selectivity and sensitivity of the amine‐terminated SnO2 NW towards NO2. The energetic position of the SAM–gas frontier orbitals with respect to the NW Fermi level is the key to ensure or impede an efficient charge transfer between the NW and the gas. As this condition strongly depends on the gas species and the sensor system, these insights into the charge transfer mechanisms can have a substantial impact on the development of highly selective hybrid gas sensors.  相似文献   

13.
With the arrival of the Internet of Things (IoTs) era, there is a growing requirement for systems with many sensor nodes in a variety of fields of applications. The demands for wireless, sustainable and independent operation are becoming more and more important for large-scale sensor networks and systems. For these purposes, a self-powered sensory system that can utilize the self-harvested energy from its surroundings to drive the sensors and directly sense external stimuli has attracted great attention. The invention and rapid development of piezoelectric generators (PENGs), which take Maxwell's displacement current as the driving force, has been pushing forward research on self-powered active mechanical sensors, electronic skins, and human-robotic interaction. Here, this review starts with a brief introduction of piezoelectric materials, fabrication, and performance improvement. Then, the energy harvesters used for self-power systems based on recent progress are reviewed. After that, PENGs applications toward recent self-powered active sensors are divided into four aspects and highlighted, respectively. Moreover, some challenges and future directions for the self-powered multifunctional sensors are put forward. It is believed that through the continuous investigations into PENG-based self-powered active sensors, they will soon be used in touch screens, electronic skins, health care, environmental monitoring, and intelligence systems.  相似文献   

14.
Recent advances in biomaterials, thin film processing, and nanofabrication offer the opportunity to design electronics with novel and unique capabilities, including high mechanical stability and biodegradation, which are relevant in medical implants, environmental sensors, and wearable and disposable devices. Combining reliable electrical performance with high mechanical deformation and chemical degradation remains still challenging. This work reports temperature sensors whose material composition enables full biodegradation while the layout and ultrathin format ensure a response time of 10 ms and stable operation demonstrated by a resistance variation of less than 0.7% when the devices are crumpled, folded, and stretched up to 10%. Magnesium microstructures are encapsulated by a compostable‐certified flexible polymer which exhibits small swelling rate and a Young's modulus of about 500 MPa which approximates that of muscles and cartilage. The extension of the design from a single sensor to an array and its integration onto a fluidic device, made of the same polymer, provides routes for a smart biodegradable system for flow mapping. Proper packaging of the sensors tunes the dissolution dynamics to a few days in water while the connection to a Bluetooth module demonstrates wireless operation with 200 mK resolution prospecting application in food tracking and in medical postsurgery monitoring.  相似文献   

15.
Multifunctional sensors that can simultaneously detect light and thermal stimuli play an essential role in the research of portable devices and complex arrays of electronics. Lots of effort has been made to realize the simultaneous detection of light and temperature in a standalone device. However, since there is a strong interference of electric signals, accurate simultaneous sensing remains a challenge. Here, a self-powered dual-parameter sensor based on thermo-phototronic effect in Nb-doped SrTiO3 (NSTO) single crystal to achieve decoupled light and temperature sensing is developed. High light- and temperature-sensing sensitivities of 0.201 µA mW cm−2 and 16.77 µA K−1 are realized, respectively. The excellent simultaneous sensing capability may be attributed to effective light-to-electrical and thermal-to-electrical energy conversion in the NSTO crystal. The excellent simultaneous sensing performance of the dual-parameter sensors, together with their ease of fabrication, pushes forward the development of highly sensitive multifunctional sensors.  相似文献   

16.
Constructing near-infrared light (NIR) light-enhanced room temperature gas sensors is becoming more promising for practical application. In this study, learning from the structure and photosynthetic process of chlorophyll thylakoid membranes in plants, the first “Thylakoid membrane” structural formaldehyde (HCHO) sensor is constructed by matching the upconversion emission of the lanthanide-doped upconversion nanoparticles (UCNPs) and the UV–vis adsorption of the as-prepared nanocomposites. The NIR-mediated sensor exhibits excellent performances, including ultra-high response (Ra / Rg = 2.22, 1 ppm), low practical limit of detection (50 ppb), reliable repeatability, high selectivity, and broadband spectral response. The practicality of the NIR-mediated gas sensor is confirmed through the remote and external stimulation test. A study of sensing mechanism demonstrates that it is the UCNPs-based light transducer produces more light-induced oxygen species for gas response in the process of non-radiative/radiative energy transfer, playing a key role in significantly improving the sensing properties of the sensor. The universality of NIR-mediated gas sensors based on UCNPs is verified using ZnO, In2O3, and SnO2 systems. This work paves a way for fabricating high-performance NIR-mediated gas sensors and will expand the application fields of NIR light.  相似文献   

17.
Low power consuming and highly responsive semiconductor‐type microelectromechanical systems (MEMS) gas sensors are fabricated for real‐time environmental monitoring applications. This subsystem is developed using a gas sensor module, a Bluetooth module, and a personal digital assistant (PDA) phone. The gas sensor module consists of a NO2 or CO gas sensor and signal processing chips. The MEMS gas sensor is composed of a microheater, a sensing electrode, and sensing material. Metal oxide nanopowder is drop‐coated onto a substrate using a microheater and integrated into the gas sensor module. The change in resistance of the metal oxide nanopowder from exposure to oxidizing or deoxidizing gases is utilized as the principle mechanism of this gas sensor operation. The variation detected in the gas sensor module is transferred to the PDA phone by way of the Bluetooth module.  相似文献   

18.
19.
This paper presents a fully integrated power management and sensing microsystem that harvests solar energy from a micro-power photovoltaic module for autonomous operation of a miniaturized hydrogen sensor. In order to measure H2 concentration, conductance change of a miniaturized palladium nanowire sensor is measured and converted to a 13-bit digital value using a fully integrated sensor interface circuit. As these nanowires have temperature cross-sensitivity, temperature is also measured using an integrated temperature sensor for further calibration of the gas sensor. Measurement results are transmitted to the base station, using an external wireless data transceiver. A fully integrated solar energy harvester stores the harvested energy in a rechargeable NiMH microbattery. As the harvested solar energy varies considerably in different lighting conditions, the power consumption and performance of the sensor is reconfigured according to the harvested solar energy, to guarantee autonomous operation of the sensor. For this purpose, the proposed energy-efficient power management circuit dynamically reconfigures the operating frequency of digital circuits and the bias currents of analog circuits. The fully integrated power management and sensor interface circuits have been implemented in a 0.18 μm CMOS process with a core area of 0.25 mm2. This circuit operates with a low supply voltage in the 0.9–1.5 V range. When operating at its highest performance, the power management circuit features a low power consumption of less than 300 nW and the whole sensor consumes 14.1 μA.  相似文献   

20.
Fabrication of nanostructured graphene (Gr) for gas sensing applications has become increasingly attractive. For the first time, 3D graphene flowers (GF) cluster patterns are grown directly on an Ni foam substrate by inexpensive homebuilt microwave plasma‐enhanced chemical vapor deposition (MPCVD) using the gas mixture H2/C2H4O2@Ar as a precursor. The interim morphologies of the synthesized GF are investigated and the growth mechanism of the GF film is proposed. The GF are decomposed to few‐layer Gr sheets by ultrasonication in ethanol. For the first time, MPCVD‐synthesized Gr is exploited to fabricate a gas sensor that exhibits an ultrahigh sensitivity of 133.2 ppm?1 to NO2. Outstanding sensor responses of 1411% and 101% to 10 ppm and 200 ppb NO2, respectively, are achieved. Furthermore, a low theoretical detection limit of 785 ppt NO2 is achieved. An ultrafast (within 2 s) recovery is observed at room temperature, and an imbedded microheater is employed to improve the selectivity of NO2 detection relative to humidity. This work represents a simple, clean, and efficient route to synthesize large‐area cauliflower Gr for gas detection with high performance, including ultrahigh sensitivity, good selectivity, fast recovery, and reversibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号