首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of advanced oxidation processes (AOPs; O3/OH-, H2O2/UV, Fe2+/H2O2, Fe3+/H2O2, Fe2+/H2O2/UV and Fe3+/H2O2/UV) have been applied for the oxidative pre-treatment of real penicillin formulation effluent (average COD0 = 1395 mg/L; TOC0 = 920 mg/L; BOD(5,0) approximately 0 mg/L). For the ozonation process the primary involvement of free radical species such as OH* in the oxidative reaction could be demonstrated via inspection of ozone absorption rates. Alkaline ozonation and the photo-Fenton's reagents both appeared to be the most promising AOPs in terms of COD (49-66%) and TOC (42-52%) abatement rates, whereas the BOD5 of the originally non-biodegradable effluent could only be improved to a value of 100 mg/L with O3/pH = 3] treatment (BOD5/COD, f = 0.08). Evaluation on COD and TOC removal rates per applied active oxidant (AOx) and oxidant (Ox) on a molar basis revealed that alkaline ozonation and particularly the UV-light assisted Fenton processes enabling good oxidation yields (1-2 mol COD and TOC removal per AOx and Ox) by far outweighed the other studied AOPs. Separate experimental studies conducted with the penicillin active substance amoxicillin trihydrate indicated that the aqueous antibiotic substance can be completely eliminated after 40 min advanced oxidation applying photo-Fenton's reagent (pH = 3; Fe(2+):H2O2 molar ratio = 1:20) and alkaline ozonation (at pH = 11.5), respectively.  相似文献   

2.
During leather processing in tanneries, considerable amount of wastes with organic and inorganic pollutants are generated. For removal of these pollutants and recovery of water, biological treatment methods and reverse osmosis (RO) based membrane technologies are adopted. While recovering water from treated tannery effluent using RO membranes, presence of residual organics, dye molecules, and other impurities in the effluent have been reported as the major drawback which leads to membrane fouling and failure. In this study, an attempt was made to improve the quality of the treated tannery effluent by subjecting the secondary treated tannery effluent by ozonation alone and ozonation of primary and secondary treated tannery effluent followed by aerobic biological Sequential Batch Reactor (SBR). Maximum color reduction of 98% at pH value of 12 with ozonation alone was observed for secondary treated tannery effluent. Ozonation of secondary treated tannery effluent followed by further biological treatment in aerobic SBR increased the chemical oxygen demand (COD) removal rate and resulted in COD values less than 300 mg/L. In case of primary treated tannery effluent, maximum COD reduction of 64% was achieved in SBR.  相似文献   

3.
This paper reports on the application of a simultaneous combination of ozone and a granular activated carbon (O(3)/GAC) as a tertiary treatment of a wastewater generated from the activity of various food-processing industries. Prior to the O(3)/GAC treatment, the wastewater was subjected to conventional primary and secondary treatments in a full-scale wastewater treatment plant (WWTP). The effluent from the WWTP presented high organic load (COD>500 mg/l and TOC>150 mg/l), which could be much reduced by the O(3)/GAC treatment. Results from the O(3)/GAC experiments were compared with those obtained in single ozonation, single adsorption onto GAC and sequential O(3)-GAC adsorption experiments. While single processes and the sequential one showed limited capacity to remove organic matter for the food-processing effluent (COD removal <40%), the simultaneous O(3)/GAC process led to decreases of COD up to 82% at the conditions here applied. The combined process also improved the ozone consumption, which decreased from about 19 g O(3)/g TOC (single ozonation process) to 8.2-10.7 g O(3)/g TOC (O(3)/GAC process). The reusability of the GAC throughout a series of consecutive O(3)/GAC experiments was studied with no apparent loss of activity for a neutral GAC (PZC = 6.7) but for a basic GAC (PZC = 9.1).  相似文献   

4.
The effect of ozonation process on pulp and paper mill effluents was investigated. The objectives were to: (1) identify various compounds in wastewater from a pulp and paper mill, (2) evaluate decolorization and organic removal efficiency by conventional bubble reactor and (3) evaluate the biodegradability at various progressive stages of ozonation. The qualitative GC/MS analyses were performed before and after the biological treatment and ozonation process. Two groups of compounds were observed in this wastewater: lignin-derived compounds and aliphatic compounds used in the pulp and paper production process (i.e. n-alkanes, fatty alcohols, fatty acid and ester). Treatment efficiency was measured by decolorization and TOC removal rates. Additionally, the utilization coefficient (k) and BOD/COD ratio were determined to observe the biodegradability of ozonized effluents. The results indicated that after 45 min, the ozonation of effluents yielded almost colorless effluent with over 90% decolorization efficiency and with corresponding ozone capacity rate of 20.0 mg O(3)L(-1). This decolorization was not always accompanied by the mineralization of the organic matters therefore ozonation was not related to TOC removal rates. The BOD/COD ratio increased from 0.10 to a maximum value of 0.32 with ozone flow rate (O/F) of 4.0 L min(-1). It was confirmed by the utilization coefficient as first order BOD equation, the magnitude k value increased from 0.21 day(-1) to maximum value of 0.47 day(-1) as the ozonation time was raised to 60 min with O/F 4.0 L min(-1).  相似文献   

5.
Laboratory experiments were undertaken to investigate the treatment performances of ozonation alone and/or its combination with granular activated carbon (GAC) adsorption for raw leachate from the NENT landfill (in Hong Kong). To improve its removal of recalcitrant contaminants from the leachate, the surface of GAC was oxidized with ozone prior to treatment. With respect to ozone dose and pH, the removal of COD and/or NH(3)-N from ozonation alone and combined ozone-GAC adsorption were evaluated and compared to those of other physico-chemical treatments in some reported studies. The removal mechanism of recalcitrant compounds by ozone-GAC adsorption treatment was presented. Among the various treatments studied, the combination of ozone-GAC adsorption using ozone-modified GAC had the highest removal for COD (86%) and/or NH(3)-N (92%) compared to ozonation alone (COD: 35%; NH(3)-N: 50%) at the same initial COD and/or NH(3)-N concentrations of 8000 and 2620 mg/L, respectively. Although the integrated treatment was more effective than ozonation alone for treating stabilized leachate, the results suggested that it could not generate treated effluent that complied with the COD limit of lower than 200 mg/L and the NH(3)-N discharge standard of less than 5 mg/L. Therefore, further biological treatments to complement the degradation of the leachate are still required to meet the environmental legislation.  相似文献   

6.
Biological treatability of raw and ozonated penicillin formulation effluent   总被引:5,自引:0,他引:5  
In the present study, oxidative pre-treatment of pharmaceutical wastewater originating from the formulation of the penicillin Sultamycillin Tosylate Diydrate via ozonation at varying pH and ozone feed rates was investigated. Biological treatability studies were performed with a synthetic wastewater alone and supplemented with raw and ozonated penicillin formulation effluents. The highest COD (34%) and TOC (24%) removal efficiencies were obtained at pH 11.0, whereas the BOD5 value increased from 16 mg l(-1) to 128 mg l(-1) after 40 min of ozonation, corresponding to an applied ozone dose of 1670 mg l(-1) and 33% relative ozone absorption. The studies showed that no degradation of raw penicillin fraction (30% of total COD) occurred, and degradation of the synthetic wastewater being completely treatable without penicillin addition, was inhibited by 7%. Upon 40 min ozonation, the synthetic wastewater could be completely oxidized and at the same time 35% of ozonated penicillin wastewater removal was obtained. Respirometric studies were conducted in parallel and produced results indicating a 22% decrease in the total oxygen consumption rate established for raw penicillin formulation effluent compared to the results obtained from the aerobic batch reactor. No inhibition of the synthetic fraction was observed for the 40 min-ozonated penicillin formulation effluent, biodegradability of the 60 min-ozonated penicillin effluent decreased possibly due to recalcitrant oxidation product accumulation. The modeling study provided experimental support and information on inhibition kinetics in activated sludge model no. 3 (ASM3) by means of respirometric tests for the first time.  相似文献   

7.
Dyeing and finishing of textile yarns and fabrics are extremely important processes in terms of both quality and environmental concerns. Among the commercial textile dyes, particularly disperse dyestuffs are of environmental interest because of their widespread use, their potential for formation of toxic aromatic amines and their low removal rate during aerobic waste treatment as well as advanced chemical oxidation. Thus, in the present paper ferrous iron coagulation, ozonation and ferrous iron-catalyzed ozonation were employed at varying pH (3-13) and Fe(II)-ion doses (0.09-18mM) for the treatment of a simulated disperse dye-bath (average initial apparent color as absorbance at 566nm=815.4m(-1); COD(0)=3784mgl(-1); TOC(0)=670mgl(-1); BOD(5,0)=58mgl(-1)) that more closely resembled an actual dyehouse effluent than an aqueous disperse dye solution. Coagulation with 5000mgl(-1) FeSO4-7H2O (18mM Fe(2+)) at pH 11 removed up to 97% color and 54% COD, whereas oxidation via ozonation alone (applied ozone dose=2300mgl(-1)) was only effective at pH 3, resulting in 77% color and 11% COD removal. Fe(II)-ion-catalyzed ozonation (3.6mM Fe(2+) at pH 3; Fe(2+):O3 molar ratio 1:14) eliminated 95% color and 48% COD and appeared to be the most attractive option among the investigated chemical treatment methods as for its applicability at the natural acidic pH of the disperse dye-bath effluent and at relatively low Fe(2+)-ion doses as compared to ferrous sulfate coagulation. However, no TOC reduction was observable for ozonation and catalytic ozonation at the investigated reaction conditions (14gl(-1) O3 at pH 3). An average six-fold enhancement in the biodegradability parameter of the synthetic dye wastewater expressed in terms of the BOD(5)/COD ratio could be achieved by the investigated chemical treatment methods.  相似文献   

8.
The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (+/-0.2) and a total COD of 12,100 (+/-910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32+/-2 degrees C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m3day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe2+ and H2O2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H2O2 and Fe2+ dosages, and the ratio of H2O2/Fe2+. Preliminary tests conducted with the dosages of 100 mg Fe2+/L and 200 mg H2O2/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe2+ and H2O2 were investigated. Under the condition of 400 mg Fe2+/L and 200 mg H2O2/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe2+/L and 1200 mg H2O2/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit.  相似文献   

9.
This study investigates the enhanced ozonation of dimethyl phthalate (DMP), which is a pollutant of concern in water environments, with high silica zeolites and ultraviolet (UV) radiation. Semibatch ozonation experiments are performed under various reaction conditions to examine the effects of inlet gas ozone concentration, high silica zeolite dosage, and UV radiation intensity on the decomposition of DMP. The complete removal of DMP can be efficiently achieved via both O(3) and O(3)/UV treatments. Note that the presence of high silica zeolites accelerates the decomposition rate of DMP in the O(3) process. On the other hand, the removal efficiencies of both chemical oxygen demand (COD) and total organic carbons (TOC) are significantly enhanced by employing the ozonation combined with UV radiation. The O(3)/UV process is also advantageous for the utilization efficiency of fed ozone especially in the late ozonation period. Furthermore, the correlation between the COD removal percentage (%) and the mole ratio of ozone consumed to the DMP treated (mol mol(-1)) is obtained. The clear-cut removal relationship of the TOC with COD during the ozonation of DMP has also been presented. Consequently, the results evaluate the flexibility of ozonation system associated with high silica zeolites and UV radiation for the removal of DMP and provide the useful information in engineering application.  相似文献   

10.
The bleaching wastewater effluent from a pulp and paper mill (located in Tianjin, China) was treated with solar photo-Fenton process in a lab-scale reactor (22 cm x 15 cm thermostatic dish). The mill used wastepaper as raw material and the effluent contained 332 mgL(-1) of total organic carbon (TOC) and 1286 mg L(-1) of COD. The treatment involved a constant intensity of irradiation (0.2 kW/m(2)) with a solar simulator of 250 W xenon lamp and various conditions of pH, temperature, and initial concentrations of H(2)O(2) and Fe(II). The better treatment conditions were searched for in the ranges of initial Fe(II) concentration from 31 to 310 mgL(-1) (initial pH 3.0, 30 degrees C), initial H(2)O(2) concentration from 0.5 to 3 Dth (1 Dth=1883 mg L(-1) for TOC mineralization) (initial pH 3.0, 30 degrees C), initial pH from 2.0 to 6.0 (1 and 2 Dth, 10:1 of H(2)O(2)/Fe(II), 30 degrees C), and temperature from 30 to 50 degrees C (1 Dth, 10:1 of H(2)O(2)/Fe(II), initial pH 2.8). TOC removal generally showed the initial fast increase stage within the first sampling time of 15 min, followed by the gradual increase stage in the remaining sampling time of 180 min experimental time course. The highest percentage of TOC removal in the first stage was about 60% when the initial pH was either 2.8 (H(2)O(2)=1 Dth, ratio=10:1, temperature=30-50 degrees C) or 3.5 (H(2)O(2)=2 Dth, ratio=10:1, temperature=30 degrees C). Also under the latter condition, the value reached 82% at 120 min and was projected to reach 94% at 180 min. According to the positive effect of temperature increase on TOC removal observed in this experiment, further increase above these maximum values is possible if the temperature of the above condition were increased from 30 to 40 degrees C or 50 degrees C. Furthermore, under most of the treatment conditions, the TOC removal reached or was projected to reach over 60% toward the end of the experiments. The result indicated that the solar photo-Fenton process has a potential to effectively remove TOC from the wastepaper pulp effluent on a large scale.  相似文献   

11.
Wastewater containing organics from a semiconductor plant was experimentally investigated in this study. The wastewater is characterized by strong color, high chemical oxygen demand (COD), a large amount of refractory volatile organic compounds and low biodegradability. Because of these characteristics, treatment of this wastewater by traditional activated sludge method is essentially impossible. In the present work, combined physical, chemical and biological methods were synergistically utilized to tackle the wastewater. The combined treatment consisted of air stripping, modified Fenton oxidation and sequencing batch reactor (SBR) method. Air stripping was employed to remove the majority of volatile organic components (notably isopropyl alcohol) from the wastewater, while the Fenton treatment decomposed the remaining refractory organics leading to simultaneous reductions of wastewater COD and color. After proper dilution with other low-strength, organics-containing wastewater stream, the wastewater effluent was finally treated by the SBR method. Experimental tests were conducted to determine the effectiveness and the optimum operating conditions of each treatment process. Test results clearly demonstrated the advantages of the combined treatments. The treatment train was found capable of lowering the wastewater COD concentration from as high as 80,000 mg/l to below 100mg/l and completely eliminating the wastewater color. The overall water quality of the final effluent exceeded the direct discharge standard and the effluent can even be considered for reuse.  相似文献   

12.
An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH(4)(+)-N and total nitrogen (TN) in the effluent were 31, 2 and 8mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78m(3)/(m(2)h), the removal efficiencies of COD, NH(4)(+)-N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH(4)(+)-N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1mg/L, the removal efficiencies of COD and NH(4)(+)-N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%.  相似文献   

13.
In this work, the electrochemical oxidation of an actual industrial wastewater with conductive-diamond anodes has been studied. The wastewater is the effluent of a fine chemicals plant. This effluent consists of an aqueous solution of solvents (ketones and alcohols) with a high concentration of aromatic compounds coming from the raw materials, intermediates and products of the different processes of the plant and its COD is around 6000 mg dm(-3). The electrolyses were carried out in a discontinuous operation mode under galvanostatic conditions, using a bench-scale plant equipped with a single compartment electrochemical flow cell. The conductive-diamond electrochemical oxidation (CDEO) allowed achieving the complete mineralization of the waste with high current efficiencies. These efficiencies seem to strongly depend on the concentration, pH and temperature but not on the current density (in the range studied). This confirms that besides the hydroxyl radicals mediated oxidation, CDEO combines other important oxidation processes such as the direct electrooxidation on the diamond surface and the oxidation mediated by other electrochemically formed compounds generated on this electrode. Other two advanced oxidation processes (ozonation and Fenton oxidation) have been also studied in this work for comparison purposes. Both technologies were able to treat the wastes, but they obtained very different results in terms of efficiency and mineralization. The efficiency of ozonation and electrochemical oxidation were very similar (especially during the first stages), although the energy consumption required by the electrochemical process to remove at fixed percentage of COD or TOC was significantly smaller than that of ozonation. The possible accumulation of carboxylic acid as final products excludes the use of Fenton oxidation as a sole treatment technology.  相似文献   

14.
The reject water or retentate generated from membrane application for recovery of water from tannery wastewater treatment contains certain refractory organics. These refractory organics are present in substantial quantity in the condensate of reject water also. Hence the treatment of rejects using conventional methods is rather difficult. In this paper, an attempt has been made to treat the reject water from the reverse osmosis (RO) and nano filtration (NF) operation on tannery wastewater using ozonation treatment technique. Ozonation studies on RO and NF rejects indicate that ozone dose of 80 and 100mg/min for 60 and 70 min contact time achieves 59 and 78% chemical oxygen demand (COD) reduction, respectively. The mass balance in ozone indicates the ozone consumption for RO and NF rejects varies from 2.4 to 3.4 and 2.8 to 4.5 g/g of COD removed respectively. The results suggest that ozonation of RO and NF rejects would significantly reduce the refractory organic pollutant loading into the environment from wastewater reuse facility.  相似文献   

15.
The decolorization and mineralization of cotton dyeing effluent containing C.I. Acid Black 22 as well as synthesized C.I. Acid Black 22 wastewater by means of advanced oxidation processes (AOPs), such as UV/H2O2, O3 and pre-ozonation coupled with UV/H2O2 processes, were evaluated in this study. It was observed that the UV/H2O2 process took longer retention time than ozonation for color removal of dye bath effluent. Reversely, the total organic carbon (TOC) removal showed different phenomena that ozonation and UV/H2O2 process obtained 33 and 90% of removal efficiency for 160 min of retention time, respectively. Additionally, laboratory synthesized dye wastewater was substantially more efficient in the decolorization process than dye bath effluent. Therefore, in this work, pre-ozonation coupled with UV/H2O2 process was employed to enhance the reduction of both color and TOC in dye bath effluent at the same time. At the same time, the retention time demand was reduced to less than 115 min for 90% removal of TOC and color by this combined process.  相似文献   

16.
In this work, batch activated sludge studies were investigated for the treatment of raw pet food wastewater characterized by oil and grease concentrations of 50,000-66,000 mg/L, COD and BOD concentrations of 100,000 and 80,000 mg/L, respectively, as well as effluent from an existing anaerobic digester treating the aforementioned wastewater. A pre-treatment process, dissolved air flotation (DAF) achieved 97-99% reduction in O&G to about 400-800 mg/L, which is still atypically high for AS. The batch studies were conducted using a 4-L bioreactor at room temperature (21 degrees C) under different conditions. The experimental results showed for the DAF pretreated effluent, 92% COD removal efficiency can be achieved by using conventional activated sludge system at a 5 days contact time and applied initial soluble COD to biomass ratio of 1.17 mg COD/mg VSS. Similarly for the digester effluent at average oil and grease concentrations of 13,500 mg/L, activated sludge affected 63.7-76.2% soluble COD removal at 5 days. The results also showed that all kinetic data best conformed to the zero order biodegradation model with a low biomass specific maximum substrate utilization rate of 0.168 mg COD/mg VSS day reflecting the slow biodegradability of the wastewater even after 99% removal of oil and grease.  相似文献   

17.
In this work, the treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process has been studied. Decolorization was almost complete after 120min with an ozone concentration of 34.08mg/L, the biological oxygen demand for 5 days (BOD5)/chemical oxygen demand (COD) ratio increased from 0.102 to 0.406, which was more effective for the subsequent upflow biological aerated filter (UBAF) to reduce COD concentration. Under the conditions of gas/liquid=3, hydraulic load=4.8m3/m3.d, T=20-25 degrees C, the mass ratio of ozone to dye=4.5, pH 11, the COD and color of the effluent were less than 40mg/L and 20 Pt-Co units, respectively, and the average decolorization and COD removal efficiency were 97% and 90%, respectively. The experimental results showed that the combination of ozone oxidation and upflow biological aerated filter was a promising technique to treat wastewater containing azo dye.  相似文献   

18.
The decolorization and mineralization of cotton dyeing effluent containing C.I. Direct Blue 199 (DB 199) by advanced oxidation processes (AOPs) such as ozonation, UV/H(2)O(2), and in sequence of ozonation with UV/H(2)O(2) processes were evaluated in this study. By ozonation alone, the color removal was almost 100% for DB 199 and greater than 80% for dye bath effluent rapidly within 5 and 15 min, respectively. Meanwhile, the reduction of total organic carbon (TOC) was about 60% for DB 199 and almost no change for dye bath effluent, respectively due to incomplete mineralization. On the other hand, by UV/H(2)O(2) alone, the color removing not only took longer time but obtained lower removal efficiencies for DB 199 and dye bath effluent about 80% and 95% in 30 and 120 min, respectively. Nevertheless, it was more effective than ozonation for TOC removal while about 75% and 80% in 30 and 120 min, respectively. As a result, this study conducted the combination with the above two processes in order to shorten time demand as well as the higher removal efficiencies of both color and TOC simultaneously. Thus, the sequence process was designed to begin with ozonation to rapidly remove color proficiently, following by UV/H(2)O(2) in order to promptly remove remaining TOC efficiently. The successful process design by sequence of ozonation with UV/H(2)O(2) has proved the significant improvement for the removal of both color and TOC in dye bath effluent shortly. Besides, the lab prepared dye solution was substantially much easier to be decolorized than field dye bath effluent so that the lab results were utilized to design the further applications of pilot or full scale.  相似文献   

19.
Advanced treatment of mature landfill leachate from a municipal landfill located in southern China (Jiangmen) was carried out in a full-scale plant using a new process. The combined process has a sequencing batch reactor (SBR) serving as the primary treatment, with polyferric sulfate (PFS) coagulation coupled with a Fenton system as secondary treatment, and a pair of upflow biological aerated filters (UBAFs) in parallel as tertiary treatment. The overall removal efficiency of chemical oxygen demand (COD) in this process was 97.3%, with an effluent COD less than 100 mg/L. Up to 99% ammonia (N–NH3) removal efficiency was achieved in the SBR, with an effluent of less than 3 mg/L, which meets the discharge standard (≤25 mg/L) with only primary treatment. The total phosphorus (TP) and suspended solids (SS) in the final effluent were reduced to less than 1 mg/L and 10 mg/L, respectively. The experience gained in the operation and maintenance will lead to a more stable performance of this combined process. An economic analysis shows that the overall operating cost of the advanced treatment was $2.70/m3. This new combination process was proved to be highly compatible and efficient in a small-scale landfill leachate treatment plant and is recommended for small-scale landfill leachate treatment plants.  相似文献   

20.
This study deals with evaluation of organic matter from Mexico City waste sanitary landfill leachate of Bordo Poniente (including domestic and industrial) by ozonation after a coagulation treatment with Fe2(SO4)(3) (2.5 g/L at pH 4-5). The content of humic substances after the coagulation treatment decreases up to 70%. Then leachate obtained from a solid with initial COD=1511 mg/L and the pH 8.5 was treated by ozone. The aqueous samples by a UV-vis and HPLC technique were analyzed. The partial identification of the initial composition of the organic matter as well as of intermediates and final products was carried out after the extraction of the initial and ozonated leachate with benzene, chloroform:methanol (2:1) and hexane. Then the extracts with a gas chromatograph with mass detector and FID were analyzed. In the HPLC results we identify malonic and oxalic acids. The initial concentrations of these acids were 19 mg/L and 214 mg/L, respectively. The oxalic acid is formatted and accumulated in ozonation. The obtained results show that the color disappears (visually) at 100% during 5 min of ozonation. The organic substances, extracted with chloroform-methanol, may be destructed during 15 min of ozonation; the organic matter, extracted with benzene, destructs completely by ozone during 5 min, and the organic compounds extracted with hexane have a low ozonation rate. The toxic compounds presented in leachate decompose completely during 15 min of ozonation. The ozonation rate constants for each group of organics (as observed constants) were calculated applying simplified mathematical model and the recurrent least square method using the program MATLAB 6.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号