首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Temperature dependence of d.c. conductivity is studied ina- Se75In25-x Pb x thin films wherex is varied from 0–10. From these measurements, the values of the pre-exponential factor (σ0) and activation energy (ΔE) are calculated for each glassy alloy. An approximate linear dependence of ln σ0 on AE is observed in this glassy system with good agreement between the expected and calculated σ0 values using Meyer-Neldel rule. Linear dependence of ln σ0 on ΔE in case of amorphous materials indicates that the conduction band tails a finite energy distance towards the valence band and Fermi level is controlled by fixed dominant hole levels deeper in the gap.  相似文献   

2.
The formation mechanisms of Li x Na1 ?x Ta y Nb1 ? y O3 perovskite solid solutions in the Li2CO3-Na2CO3-Nb2O5-Ta2O5 system have been studied by x-ray diffraction, differential thermal analysis, thermogravimetry, IR spectroscopy, and mass spectrometry at temperatures from 300 to 1100°C. The results indicate that the synthesis of Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions involves a complex sequence of consecutive and parallel solid-state reactions. An optimized synthesis procedure for Li x Na1 ? x Ta y Nb1 ? y O3 solid solutions is proposed.  相似文献   

3.
This review describes the principles of semiconductor spintronics, represents the physicochemical properties of materials based on manganese-alloyed AIIBIVC2V compounds, considers the results from theoretical simulation of magnetic properties of AIIBIVC2V alloyed with 3d metals, summarizes the basic approaches to explanation of ferromagnetism with Curie points above room temperature arising in AIIBIVC2V:Mn, and indicates promising ways to synthesize and study magnetic semiconductors based on chalcopyrites AIIBIVC2V in order to produce a suitable material for spintronic devices.  相似文献   

4.
The effect of the synthesis conditions on the properties of inorganic laser-active liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ is considered. The kinetic dependences of the U(IV) content and decay time of the Nd3+ luminescence in POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions for various synthesis procedures at 380 K have been obtained. In POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions, nonradiative energy transfer Nd3+ → U4+ is observed, and quenching of the Nd3+ luminescence is described by the Stern-Volmer law: k q = (6.4 ± 0.6) × 105 l mol?1 s?1. Laser liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ with neodymium concentration of up to 0.7 M, uranyl concentration of up to 0.1 M, and decay time of the Nd3+ luminescence of up to 220 μs have been prepared for the first time.  相似文献   

5.
The structure of three compounds in the Cu2Se-In2Se3-Cr2Se3 system near CuInCr2Se5 is determined by single-crystal x-ray diffraction: CuInCr4Se8 (I), Cu2In2Se4 (II), and Cu0.5In0.5Se (III). I has a cubic (spinel type) structure: a = 10.606(4) Å, Z = 4, sp. gr. F43m. II has a pseudotetragonal (sphalerite type) structure: a = 5.774(2) Å, c = 11.617(6) Å. The structure of II was solved in a reduced unit cell with a = 5.774(2) Å, b = 5.774(2) Å, c = 7.095(6) Å, = 113.95(5)°, = 113.95(5)°, = 90.00(4)°, Z = 1, sp. gr. P1. III has a triclinic cell (disordered structure of II): a = 4.088(1) Å, b = 4.091(2) Å, c = 4.101(1) Å, = 60.05(1)°, = 60.08(1)°, = 89.98(4)°, Z = 1, sp. gr. P1. The Cu and In atoms in I sit in inequivalent tetrahedral sites, and the Cr atoms reside in octahedral interstices of the close packing of Se atoms. The bond lengths are In–Se = 2.538(6), Cr(1)–Se(1) = 2.514(7), Cr(1)–Se(2) = 2.576(8), and Cu–Se = 2.437(5) Å. In II, all of the atoms sit in tetrahedral sites; the mean bond lengths are In–Se = 2.578(6) and Cu–Se = 2.44(1) Å. In III, the Cu and In atoms are fully disordered in the same tetrahedral site; the mean Cu(In)–Se bond length is 2.508(6) Å.Translated from Neorganicheskie Materialy, Vol. 40, No. 12, 2004, pp. 1435–1439.Original Russian Text Copyright © 2004 by Antsyshkina, Sadikov, Koneshova, Sergienko.  相似文献   

6.
An investigation was made of samples having a chemical formula of Ni1−x Zn x Fe2O4, where x = 0.3, 0.5 and 0.7. The samples were prepared by the reaction combustion synthesis method and sintered at 1,200 °C/2 h in a static air atmosphere. The influence of the Zn concentration on the relative density, microstructure and magnetic properties of the samples was studied. X-ray diffraction, scanning electron microscopy and magnetic hysteresis loop tracer were used to analyze the compositions. The samples were found to have a spinel cubic structure, sintered density of 92.9%–98.8% of the corresponding X-ray density, homogeneous microstructure with grain size ranging from 1.37 to 3.36 μm, maximum flux density of 0.16–0.35 T, field coercivity ranging from 17 to 168 A/m, and loss hysteresis of 1.5–105 W/kg. Increased grain growth, with fine pores inside the grains, was found to occur as the Zn concentration increased. The overall findings are discussed here in light of the existing understanding of these systems.  相似文献   

7.
New potassium ion conducting solid electrolytes based on potassium monoferrite have been prepared through partial substitution of the divalent cation Cd2+ on the potassium site, and their properties have been investigated. The introduction of cadmium cations sharply increases the electrical conductivity of KFeO2 over the entire temperature range studied. In addition to the maximum in conductivity at the boundary of the K1 − 2x Cd x FeO2 solid solution, there is a maximum at a higher cadmium content (x = 0.30–0.35). The possible origins of this maximum are discussed.  相似文献   

8.
9.
Y2O3 + Nd2O3 co-stabilized ZrO2-based composites with 40 vol% WC were fully densified by pulsed electric current sintering (PECS) at 1350 °C and 1450 °C. The influence of the PECS temperature and Nd2O3 co-stabilizer content on the densification, hardness, fracture toughness and bending strength of the composites was investigated. The best combination of properties was obtained for a 1 mol% Y2O3 and 0.75 mol% Nd2O3 co-stabilized composite densified for 2 min at 1450 °C under a pressure of 62 MPa, resulting in a hardness of 15.5 ± 0.2 GPa, an excellent toughness of 9.6 ± 0.4 MPa.m0.5 and an impressive 3-point bending strength of 2.04 ± 0.08 GPa. The hydrothermal stability of the 1 mol% Y2O3 + 1 mol% Nd2O3 co-stabilized ZrO2-WC (60/40) composites was compared with that of the equivalent 2 mol% Y2O3 stabilized ceramic. The double stabilized composite did not degrade in 1.5 MPa steam at 200 °C after 4000 min, whereas the yttria stabilized composite degraded after less than 2000 min. Moreover, the (1Y,1Nd) ZrO2-WC composites have a substantially higher toughness (~9 MPa.m0.5) than their 2Y stabilized equivalents (~7 MPa.m0.5).  相似文献   

10.
The compounds Gd14Cu48Ga3 and Tb14Cu48Ga3 have been synthesized, and their structures have been determined by powder x-ray diffraction (Gd14Ag51 type).  相似文献   

11.
New solid solutions, Bi2?x?y Tm x Nb y O3+δ, with tetragonal and cubic structures have been synthesized in the Bi2O3-Tm2O3-Nb2O5 system, and their electrical conductivity has been measured at temperatures from 670 to 1020 K. The 1020-K conductivity of the tetragonal solid solution Bi1.8Tm0.15Nb0.05O3+δ is comparable to that of Bi1.75Tm0.25O3, the best conductor in the Bi2O3-Tm2O3 system.  相似文献   

12.
We have measured the thermal conductivity of Bi2Te3-Sb2Te3-Gd2Te3 solid solutions at temperatures from ~80 to 300 K and have determined the electronic and lattice components of their total thermal conductivity and the contributions of Sb2Te3 and Gd2Te3 to their thermal resistance. The results indicate that heat in these materials is transported largely by phonons and that three-phonon processes play a key role in determining the lattice thermal conductivity of the solid solutions.  相似文献   

13.
The superconducting properties of iodine-intercalated high-temperature superconducting Bi2Sr2Ca2Cu3O10+x phase (Bi-2223) were systematically studied. It was found that for samples containing a significant amount of Bi2Sr2CaCu2O8+x , iodine intercalation results in the dramatic decrease of the inter-granular critical current density, as well as a significant decrease of the critical temperature (T c), the critical current density in the grains (J cg), and of the amount of Bi-2223. For samples with a large amount of Bi-2223, T c changes insignificantly, whereas J cg can even increase. We argue that the different behavior of the superconducting parameters is the result of various oxygen concentrations, and we explain the effect of iodine intercalation based on the parabolic dependence between T c and the number of holes per CuO2 layer. The H(T) curves (determined from the peak position in the loss signal of ac susceptibility) for intercalated samples deviate significantly from the quasi 2D-like behavior, pointing toward an enhancement of the 3D fluctuations of vortices. For the change in the values and dimensionality of the flux pinning in the process of the intercalation, we attempted a qualitative explanation based on the models proposed in literature.  相似文献   

14.
15.
The Ho2S3-Ga2S3 system has been studied using differential thermal analysis, X-ray diffraction, microstructural analysis, microhardness tests, and density measurements, and its phase diagram has been constructed. The system contains three ternary compounds: Ho3GaS6, HoGaS3, and Ho6Ga10/3S14. Their melting behavior has been studied for the first time. The compound Ho6Ga10/3S14 melts congruently at 1435 K; Ho3GaS6 and HoGaS3 melt incongruently at 1370 and 1250 K, respectively. The Ho2S3-Ga2S3 system is a pseudobinary join of the ternary system Ho-Ga-S. At room temperature, the β-Ga2S3-based solid solution extends to 1.5 mol % Ho2S3; the Ho2S3 solubility in γ-Ga2S3 is 10 mol %. The compounds HoGaS3 and Ho3GaS6 crystallize in orthorhombic symmetry (Ho3GaS6: a = 10.40 Å, b = 13.20 Å, c = 6.44 Å, Z = 4; HoGaS3: a = 6.8 Å, b = 9.92 Å, a = 3.08 Å, Z = 4). Ho6Ga10/3S14 has a hexagonal structure (a = 9.62 Å, c = 6.04 Å).  相似文献   

16.
Polycrystalline samples of mixed composites of Ni0.93Co0.02Mn0.05Fe2O4 + BaTiO3 were prepared by conventional double sintering ceramic method. The phase analysis was carried out by using X-ray diffraction technique. Variation of dc resistivity and thermo emf was studied as a function of temperature. AC conductivity (σac) was investigated in the frequency range 100 Hz–1 MHz. The loss tangent (tan δ) measurements conclude that the conduction mechanism in these samples is due to small polaron hopping. The magnetoelectric conversion factor, i.e. dc(ME) H was studied as a function of intensity of magnetic field and the maximum value 407 μV/cm/Oe was observed at a field of 0.8 kOe in a composite with 85% BaTiO3 and 15% Ni0.93Co0.02Mn0.05Fe2O4 phase.  相似文献   

17.
Semiconducting glasses of the Fe2O3-Bi2O3-K2B4O7 system were prepared by the press-quenching method and their dc conductivity in the temperature range 223–393 K was measured. The glass transition temperature values (Tg) of the present glasses were larger than those of tellurite glasses. This indicates a higher thermal stability of the glass in the present system. The density for these glasses was consistent with the ionic size, atomic weight and amount of different elements in the glasses. Mössbauer results revealed that the relative fraction of Fe increases with increasing Fe2O3 content. Electrical conductivity showed a similar composition dependency as the fraction of Fe. The glasses had conductivities ranging from 10 to 10 Scm at temperatures from 223 to 393 K. Electrical conduction of the glasses was confirmed to be due to non-adiabatic small polaron hopping and the conduction was primarily determined by hopping carrier mobility.  相似文献   

18.
Lead-free ferroelectric ceramics of (1−x) [0.88Na0.5Bi0.5TiO3-0.12K0.5Bi0.5TiO3]-x KNbO3(x = 0, 0.02, 0.04, and 0.06) were prepared by the conventional ceramic fabrication technique. The crystal structure, dielectric properties and P-E hysteresis loops were investigated. XRD data showed that all compositions could form pure perovskite structure. Temperature dependence of dielectric constant ε r and dissipation factor tanδ measurement between room temperature and 500C revealed that the compounds experience phase transitions that from ferroelectric to anti-ferroelectric and anti-ferroelectric to paraelectric in the range of x = 0–0.04. The frequency dependent dielectric constant showed these compounds were relaxor ferroelectric. At low frequency and high temperature, dielectric constant and dissipation factor increased sharply attributed to the superparaelectric clusters after the KNbO3 doped.  相似文献   

19.
A diagram of the CuInSe2-In2Te3 system state is constructed using the methods of physicochemical analysis. The system is quasi-binary with limited areas of solid solutions based on both source components. The investigations of thermal conductivity of the (CuInSe2)0.99(In2Te3)0.01 solid solution demonstrate a complex nature of the heat transfer attributed to both a multicomponent structure of the composition and a defect crystalline structure.  相似文献   

20.
We have studied the properties of nanocrystalline ZrO2-Y2O3-CeO2-CoO-Al2O3 powders prepared via hydrothermal treatment of a mixture of coprecipitated hydroxides at 210°C. A number of general trends are identified in the variation of the properties of the synthesized powders during heat treatment at temperatures from 500 to 1200°C. Our results demonstrate that the addition of 0.3 mol % CoO to nanocrystalline ZrO2-based powders containing 1 to 5 mol % Al2O3 allows one to obtain composites with good sinterability at a reduced temperature (1200°C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号