首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes and assesses a behavioral model for grid-connected photovoltaic inverters. The model allows us to simulate the electrical behavior of commercial single-phase and three-phase inverters in accordance with the limits of EN50160 power quality. Regarding power strategies for current inverters, both voltage and current control loops have been explicitly modeled, providing suitable simulations of the injected AC-current waveform under either power dynamics or grid voltage disturbances. Additionally, irradiance oscillations and dynamic Maximum Power Point Tracking performance have been also considered in the proposed solution. Internal inverter variables are not needed to fit the model parameters, being estimated from basic data-sheet information provided by manufacturers and simple AC-collected values from the PV power plants. This characteristic avoids any additional DC-side measurement, being a significant contribution in comparison with previous approaches.The proposed model is assessed using real data collected in Spanish photovoltaic power plants along several years. The obtained results are compared with previous behavioral model approaches and also included in the paper.  相似文献   

2.
3.
文章提出了一种应用于光伏发电的新型升压式无变压器逆变器拓扑结构。该拓扑结构使用双载波同相层叠调制技术,可实现电压的高增益,仅使用较低占空比即可将低压直流侧电压并网。该拓扑输入负极与电网中性点共地,可将分布的杂散电容短路,完成无共模电流运行。同时,所提拓扑结构通过多单元整合实现了能量的单级传递,仅含6个功率开关管。文章详细分析了所提拓扑各功率元件的设计及主要工作模式。最后,通过一台120 W的试验样机,验证了所提拓扑的正确性和控制策略的有效性。  相似文献   

4.
Photovoltaic (PV) power production increased drastically in Europe throughout the last years. Since about the 6% of electricity in Italy comes from PV, an accurate and reliable forecasting of production would be needed for an efficient management of the power grid. We investigate the possibility to forecast daily PV electricity production up to ten days without using on-site measurements of meteorological variables. Our study uses a PV production dataset of 65 Italian sites and it is divided in two parts: first, an assessment of the predictability of meteorological variables using weather forecasts; second, an analysis of predicting solar power production through data-driven modelling. We calibrate Support Vector Machine (SVM) models using available observations and then we apply the same models on the weather forecasts variables to predict daily PV power production. As expected, cloud cover variability strongly affects solar power production, we observe that while during summer the forecast error is under the 10% (slightly lower in south Italy), during winter it is abundantly above the 20%.  相似文献   

5.
This paper presents a grid-connected photovoltaic (PV) power conversion system based on a single-phase multilevel inverter. The proposed system fundamentally consists of PV arrays and a single-phase multilevel inverter structure. First, configuration and structural parts of the PV assisted inverter system are introduced in detail. To produce reference output voltage waves, a simple switching strategy based on calculating switching angles is improved. By calculated switching angles, the reference signal is produced as a multilevel shaped output voltage wave. The control algorithm and operational principles of the proposed system are explained. Operating PV arrays in the same load condition is a considerable point; therefore a simulation study is performed to arrange the PV arrays. After determining the number and connection types of the PV arrays, the system is configured through the arrangement of the PV arrays. The validity of the proposed system is verified through simulations and experimental study. The results demonstrate that the system can achieve lower total harmonic distortion (THD) on the output voltage and load current, and it is capable of operating synchronous and transferring power values having different characteristic to the grid. Hence, it is suitable to use the proposed configuration as a PV power conversion system in various applications.  相似文献   

6.
An output simulation is one of the first steps in planning a photovoltaic power plant (PVP) at a certain location. Various computer codes already exist to assess the energy output of a PVP, when fed with the relevant meteorological data. For the alpine area, however, there is no appropriate data considering the altitude of the site available. A computer code has been written to check the available raw data for plausibility and to fill in missing data synthetically. On the basis of 6 yr of measured data a test reference year (TRY) has been developed for the town of Leonding and the summit Loser. They are located just 80 km apart but have a 1250 m difference in their altitudes. For comparison, these new TRYs, together with other already existing TRYs from different places in a surrounding area of about 300 km, are used for calculation of the expected energy output of a PVP. A clear increase of energy yield with higher altitude can be observed. The summit Loser (1550 m), with the highest altitude investigated in this study, proved to be the most productive location. Besides the clearer sky and snow reflection, the lower temperature as well as better cooling of the panels by the wind in the Alps contribute to the higher amount of energy output.  相似文献   

7.
In this study, a novel high accurate offline sensorless dual-axis solar tracker is proposed that can be widely used in photovoltaic systems and solar concentrators. The offline estimated data extracted from solar map equations are used by the tracker to find the sun direction where the maximum value of solar energy is captured. The solar tracker has been built, and it is experimentally verified that 19.1%–30.2% more solar energy can be captured depending on the seasons by utilizing the tracker. The contribution of this work is that the proposed offline sensorless dual-axis solar tracker not only has a very simple structure with a fabrication cost much less than sensor based solar trackers but also high accurately tracks the sun direction with a very small tracking error of only 0.43° which is less than the other sensorless and sensor based dual-axis solar trackers reported in the literature excluding the sensor based dual-axis solar trackers equipped with expensive sensors mounted on high accurate mechanical carriers. Furthermore, unlike all sensor based solar trackers, since the technique is offline, the proposed tracker does not use any feedback signal, and thus, its operation is independent from external disturbances and weather conditions such as cloudy sky.  相似文献   

8.
In recent years there has been a growing interest in the development of hybrid photovoltaic cells consisting of new materials, such as devices based on the combination of a wide gap semiconductor and an organic dye (dye-sensitized solar cells, DSSC). In this paper we obtain nano-zinc oxide particles whose optical and electrical properties have been modified by the presence of small amounts of Al or In acting as dopants. The aim of this study is to improve the compatibility of each of the compounds present in the photovoltaic solar cell. The knowledge gained will provide input to guide the processes in the manufacture of hybrid solar cells.  相似文献   

9.
A simple explicit photovoltaic formulation for characterizing and dimensioning cell-arrays is presented. The method permits the short-circuit current, the open-circuit voltage, the maximum cell power and the optimum cell-operation conditions to be determined. Further, the model also allows quantifying the effects of panel temperature and solar irradiance on key cell parameters. Based on several datasheets, the methodology is validated by covering a wide range of operation conditions. The proposed approach can thus, be very useful for design engineers to quickly and easily determine the performance of any photovoltaic array without performing tedious numerical calculations.  相似文献   

10.
In this study the influence of the nanofluid in the photovoltaic thermal system (PVT) has been examined experimentally. The nanoparticles zinc oxide (ZnO) dispersed in the base fluid water at the concentration of 0.25 %wt. A series of experimental tests were conducted between 9:00 A.M. to 16:00 P.M. ZnO nanofluids passed through the PVT panel at various mass flow rates. To increase the thermal efficiency and performance of the PVT, instead of using plain water, nanofluids were introduced. The parameters such as output power, surface temperature, fluid outlet temperature, thermal efficiency, and electrical efficiency were examined at the different mass flow rates such as 0.008 kg/s, 0.010 kg/s, and 0.012 kg/s. Added to above, the proposed photovoltaic thermal system was also assisted in producing hydrogen by electrolysis process. Polymer electrolyte membrane (PEM) has been used to generate the hydrogen via electrolysis. With the use of nanofluids, the electrical efficiency and thermal efficiency were increased owing to the reduction in the cell temperature. Introduction of the nanofluids at the optimal mass flow rate helps the panel to produce higher electrical output. The hydrogen yield rate was also increased by the use of nanofluids. Among the different mass flow rate, 0.012 kg/s reported maximum thermal efficiency of 33.4% with the hydrogen production rate of 17.4 ml/min. Based on the extensive observed results procured, photovoltaic thermal systems can be a promising candidate for the production of hydrogen using PEM electrolyzer.  相似文献   

11.
详细分析了三相无变压器型光伏并网逆变器共模电压的产生机理,构建了共模电压模型,得出了抑制共模电流的一般规律。利用该规律,对三相全桥拓扑结构的共模电流进行了详细分析,提出了新型控制方法,通过仿真试验对该方法进行了验证。  相似文献   

12.
Japan started implementing a national Feed-In Tariff (FiT) mechanism on the 1st July 2012, which included specific payment tariffs for solar photovoltaic (PV) installations. This marks a new era in the renewable energy landscape in Japan. This paper aims at analysing the solar PV prospect in Japan, particularly in both residential and non-residential sectors. The paper presents, first, an overview of energy trends in Japan prior to the Fukushima event. This is followed by a short review of solar PV progress in the country, highlighting the major policies and programmes that have been implemented as well as the installations that have been carried out over the past two decades. Next, the financial impact of the new FiT scheme on consumers is evaluated. The financial analysis investigates the total profit, the average annual return on investment and the payback period. For a comparison purposes, a similar financial analysis is also conducted with selected countries around the world – namely Germany, Italy and the United Kingdom. The results from this analysis indicate that the new Japanese FiT rate generates a good profit, a moderate annual return on investment and an acceptable payback period, suggesting an increasing trend of solar PV uptake over the next years.  相似文献   

13.
Himanshu Dehra 《Solar Energy》2009,83(11):1933-1942
A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montréal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system.  相似文献   

14.
This work describes measurements of the solar irradiance made during cloudy periods in order to improve the amount of solar energy captured during such periods. It is well-known that 2-axis tracking, in which solar modules are pointed at the sun, improves the overall capture of solar energy by a given area of modules by 30-50% versus modules with a fixed tilt. On sunny days the direct sunshine accounts for up to 90% of the total solar energy, with the other 10% from diffuse (scattered) solar energy. However, during overcast conditions nearly all of the solar irradiance is diffuse radiation that is isotropically-distributed over the whole sky. An analysis of our data shows that during overcast conditions, tilting a solar module or sensor away from the zenith reduces the irradiance relative to a horizontal configuration, in which the sensor or module is pointed toward the zenith (horizontal module tilt), and thus receives the highest amount of this isotropically-distributed sky radiation. This observation led to an improved tracking algorithm in which a solar array would track the sun during cloud-free periods using 2-axis tracking, when the solar disk is visible, but go to a horizontal configuration when the sky becomes overcast. During cloudy periods we show that a horizontal module orientation increases the solar energy capture by nearly 50% compared to 2-axis solar tracking during the same period. Improving the harvesting of solar energy on cloudy days is important to using solar energy on a daily basis for fueling fuel-cell electric vehicles or charging extended-range electric vehicles because it improves the energy capture on the days with the lowest hydrogen generation, which in turn reduces the system size and cost.  相似文献   

15.
J.M. Pearce   《Energy》2009,34(11):1947-1954
The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five.  相似文献   

16.
The Australian Government ran a renewable energy program in the 2000s that provided rebates to householders who acquired solar Photovoltaic (PV) energy systems. Originally called the Photovoltaic Rebate Program (PVRP), it was rebranded the Solar Homes and Communities Plan (SHCP) in November 2007. This paper evaluates both the PVRP and SHCP using measures of cost-effectiveness and fairness. It finds that the program was a major driver of a more than six-fold increase in PV generation capacity in the 2000s, albeit off a low base. In 2010, solar PV’s share of the Australian electricity market was still only 0.1%. The program was also environmentally ineffective and costly, reducing emissions by 0.09 MtCO2-e/yr over the life of the rebated PV systems at an average cost of between AU$238 and AU$282/tCO2-e. In addition, the data suggest there were equity issues associated with the program, with 66% of all successful applicants residing in postal areas that were rated as medium–high or high on a Socio-economic Status (SES) scale.  相似文献   

17.
Part of the electrical energy spent for lighting purposes can be recycled by photovoltaic power generation. We have suggested some methods to enhance power generation based on solar cells using indoor artificial lights. An emergency street light system working on stored photovoltaic energy from outdoor sodium vapor lamp illumination is proposed as an application.  相似文献   

18.
A sliding mode controller for the single-phase grid-connected photovoltaic system has been proposed in this paper. Contrary to the conventional controller, the proposed system consists of maximum power point tracker (MPPT) controller and sliding mode current controller only. The proposed MPPT controller generates current reference directly from the solar array power information and the current controller uses the sliding mode technique for the tight regulation of current. The new MPPT controller does not require the measurement of the voltage derivative which can be a cause of divide-by-zero singularity problems. The sliding mode controller has been constructed based on a time-varying sliding surface to control the sinusoidal inductor current and solar array power simultaneously. The proposed system can avoid the current overshoot and make optimal design for the system components. The structures of a proposed system are simple, but they show the robust tracking property against modeling uncertainties and parameter variations. The mathematical modeling is developed and the experimental results verify the validity of the proposed controller.  相似文献   

19.
A methodology for optimal sizing of stand-alone PV/WG systems is presented. The purpose of the proposed methodology is to suggest, among a list of commercially available system devices, the optimal number and type of units ensuring that the 20-year round total system cost is minimized subject to the constraint that the load energy requirements are completely covered, resulting in zero load rejection. The 20-year round total system cost is equal to the sum of the respective components capital and maintenance costs. The cost (objective) function minimization is implemented using genetic algorithms, which, compared to conventional optimization methods such as dynamic programming and gradient techniques, have the ability to attain the global optimum with relative computational simplicity. The proposed method has been applied for the design of a power generation system which supplies a residential household. The simulation results verify that hybrid PV/WG systems feature lower system cost compared to the cases where either exclusively WG or exclusively PV sources are used.  相似文献   

20.
A procedure for sizing an electrolytic hydrogen production plant powered by a stand-alone photovoltaic system is described in this study. Our fundamental proposal is to compensate the loss of load probability of the photovoltaic system, by means of a hydrogen complementary storage. We compute the necessary hydrogen volume of that reserve storage. Using the isoreliability map of curves that characterizes a given location, we determine the size of the photovoltaic system that would be needed to generate a predetermined flow of hydrogen. Finally, we share information on our own experience relating to the design of the experimental installation at Villafría, located in the city of Burgos, Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号