首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Polypropylene/aluminum–multi-walled carbon nanotube (PP/Al–CNT) composites were prepared by a twin-screw extruder. The morphology indicates that the CNTs are well embedded or implanted within Al-flakes rather than attached on the surface. During preparation of composites, the CNTs came apart from Al–CNT so that free CNTs as well as Al–CNT were observed in PP/Al–CNT composite. The crystallization temperatures of PP/CNT and PP/Al–CNT composites were increased from 111 °C for PP to 127 °C for the composites. The decomposition temperature increased by 55 °C for PP/CNT composite and 75 °C for PP/Al–CNT composite. The PP/Al–CNT composite showed higher thermal conductivity than PP/CNT and PP/Al-flake composites with increasing filler content. PP/Al–CNT composites showed the viscosity values between PP/CNT and PP/Al-flake composites. PP/Al–CNT composite showed higher tensile modulus and lower tensile strength with increasing filler content compared to PP/CNT and PP/Al-flake composites.  相似文献   

2.
A Tyranno ZMI fiber/TiSi2–Si matrix composite was fabricated via melt infiltration (MI) of a Si–16at%Ti alloy at 1375 °C under vacuum. The Si–Ti alloy was used as an infiltrant to conduct MI processing below 1400 °C and inhibit the strength degradation of the amorphous SiC fibers. The alloy matrix formed was dense and comprised primarily of TiSi2–Si eutectic structures. The TiSi2–Si matrix composite melt-infiltrated at 1375 °C showed a pseudo-plastic tensile stress–strain behavior followed by final fracture at ∼290 MPa and ∼0.9% strain. When the MI temperature was increased to 1450 °C, however, substantial reduction in the stiffness and ultimate strength occurred under tensile loading. Microstructural observations revealed that these degradations were attributed to the damages that occurred on the reinforcing fibers and pyrolytic carbon interfaces during the MI process. The present experimental results clearly demonstrated the effectiveness of the low-temperature MI process in strengthening Tyranno ZMI fiber composites and reducing the processing cost.  相似文献   

3.
The present experimental study deals with the repeated transverse impact effect on the burst pressure of composite pressure vessels. Filament winding method is used to produce the vessels. Glass fiber reinforced (GFR) vessels are manufactured by using E-glass and epoxy resin. Composite pressure vessel was manufactured from fibers oriented [+55°/−55°/+55°/−55]2s and the impact energies were chosen as 10, 15, 20, 25, 30 J for empty vessel during the impact tests. In addition, 10, 15, 20, 25 J for water filled conditions at 25 and 70 °C. The transverse impact load was applied in single and three times repeated form. The results show that when the impact load and water temperature increases, the burst pressure decreases.  相似文献   

4.
For the first stage, a metastable β titanium alloy, Ti–3.5Al–5Mo–4V–2Cr–2Sn–2Zr–1Fe reinforced with trace amounts of TiB whiskers and TiC particles was fabricated by vacuum arc melting process and hot forging followed by heat treatment at 780 °C/740 °C, then by aging at 500 °C, 550 °C, 570 °C and 600 °C. For the second stage, the unreinforced titanium alloy was also fabricated by the same process. The microstructural characteristics were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Traces of TiB whiskers and TiC particles (2.2 vol.%) with a volume ratio of 2:3 synthesized in situ exerted a hybrid reinforcing effect on the β titanium alloy. The reinforcements were uniformly distributed in the matrix and the elastic modulus was improved about 25 GPa. Ultimate tensile strength and yield strength achieves about 1625 MPa and 1500MPa respectively, with ductility at 7% when the aging temperature is 500 °C. The ductility of (TiB + TiC)/(Ti–3.5Al–5Mo–4 V–2Cr–2Sn–2Zr–1Fe) matrix composite could be enhanced by increasing the aging temperatures. After 780 °C followed by aging at 570 °C, excellent strength and plasticity properties were obtained (ultimate tensile strength of matrix alloy is 1350 MPa with elongation of 18% and ultimate tensile strength of composite is 1500 MPa with elongation of 13%).  相似文献   

5.
The effect of seawater immersion on impact behavior of glass–epoxy composite pipes is experimentally investigated. Glass–epoxy pipes with [±55°]3 orientation were fabricated using filament winding method. Composite pipes were selected for four different diameters as 50 mm, 75 mm, 100 mm, and 150 mm. The pipes were immersed in artificial seawater having a salinity of about 3.5% for 3, 6, 9, and 12 months in laboratory conditions. At the end of the conditioning period, the specimens were impacted at three distinct energy levels as 15 J, 20 J, and 25 J at ambient temperature of 20 °C. The comparisons between the dry and immersed cases were carried out by using contact force, deflection and absorbed energy data of the impact tests. Results show that moisture absorption, salt in seawater, diameter of specimen and residual stresses produced by manufacturing process of the composite pipe have significant effect on maximum contact force, maximum deflection, absorbed energy and failure of composite pipes according to exposure time to seawater.  相似文献   

6.
Solutal melting was investigated in-situ by means of high temperature laser scanning confocal microscopy. This technique enabled us to track the motion of the solid–liquid interface in order to determine the evolution of the interfacial velocity. The Cu–Ni binary system was chosen as a model case and concentric samples were fabricated from both pure metals. Two holding temperatures above the melting point of Cu were investigated, i.e., 1115 and 1145 °C. As the average composition of the mounted samples was chosen to lie within the solid solution region, the reaction occurred via the following steps: i) thermal melting of Cu, ii) solutal melting of Ni, and iii) resolidification. A smooth and regular s–l interface was observed during solutal melting, except during a short period at 1145 °C where an irregularity briefly appeared. At 1115 °C, the dissolution of Ni was completed in less than 3 min and the total thickness dissolved was in the range 40–50 μm. At 1145 °C, the dissolution did not last much longer but the total thickness dissolved was significantly larger: approximately 180 μm. At both temperatures, the velocity first increased, then reached a maximum value after 20–30 s (0.6–0.8 μm/s at 1115 °C and 4.8 μm/s at 1145 °C), and finally tends progressively to zero. Post-mortem observations showed that the Ni was homogeneously dissolved over the entire sample height at 1115 °C, which excludes any effects of convection on the velocities that we measured. On the contrary, at 1145 °C, the dissolution was more important in the upper part of the sample and the interface appeared curved. The total thickness dissolved was in both cases larger than the predicted theoretical values and the melting velocities were also larger than the values obtained from finite difference calculations. The discrepancies are more pronounced at higher temperature.  相似文献   

7.
The utilization of bio-based engineering polymers as a matrix material for cellulosic fiber reinforced composites has become an important focus in materials research. This is due to a rising demand for sustainable materials from renewable resources. In addition to this aspect, the bio-based materials provide an advantage for lightweight applications with their lower density. In this investigation, the completely bio-based polyamide 10.10, with a melting point above 200 °C, was used as a polymer matrix. Chopped man-made cellulose fibers (Cordenka CR-Type) were investigated as reinforcement for use in injection molded applications. A co-rotating twin-screw extruder with a screw-diameter of 18 mm was used for compounding. It was verified that reinforcing polyamide 10.10 with 20 wt% and 30 wt% cellulosic fibers is possible, resulting in an increase of impact and tensile properties. Furthermore, it was shown that the temperatures and screw-configurations of the twin-screw extruder only result in different fiber length distributions but in minor differences of the morphological structure and mechanical properties of PA 10.10 with 20 wt% fibers. Compounds with 30 wt% cellulose fibers show significant higher impact properties that those with 30 wt% glass fibers.  相似文献   

8.
The effects of winding angle on the behaviour of glass/epoxy composite tubes under multiaxial cyclic loading were investigated. The performance of such composite tubes was studied using an indigenous automated test procedure that is compatible with the internal qualification requirements of the composite pipe manufacturers. Glass fibre reinforced epoxy (GRE) composite pipes with three winding angles, namely, [± 45°]4, [± 55°]4, and [± 63°]4, were tested. A novel automated test rig was fabricated to accommodate five stress ratios, ranging from pure axial to pure hoop loadings. The cyclic pressure test was conducted until droplets of water were seen on the outer surface of the pipe. Failure envelopes were then constructed based on the first ply failure (FPF) points determined from the axial stress to hoop strain response at five stress ratios. Three functional failure modes, namely, tensile axial, weepage, and local leakage failures, were observed during the tests. The results indicate that each winding angle dominates a different optimum pressure loading condition, namely, [± 55°]4 for pure hydrostatic loading, [± 45°]4 for hoop to axial loading, and [± 63°]4 for quad hoop to axial loading. The envelopes show a strong dependence on the stress ratio and winding angle.  相似文献   

9.
Transparent cellulose nanowhiskers (CNW)/graphene (GN) and CNW/multi-wall carbon nanotube (MWCNT) films were obtained by ultrasonication assisted mechanically stirring followed by solvent casting methods. GN has more significant influence on the properties of CNW film than MWCNT does because GN exhibits strong interaction with CNW by its adsorption on the surface of GN. Thermal behaviors of CNW-based composite films were greatly affected by addition of GN or MWCNT. The melting peak and initial degradation temperature increase by 23.5 and 24 °C, and by 78 °C and 94 °C for the composite films containing 5 wt% MWCNT and 5 wt% GN, respectively. The composites show the contact angles of 61.9° for GN included film and 46.9° for MWCNT included film, which is higher than that of pure CNW film (42.8°).  相似文献   

10.
The interest in using natural fibers as reinforcement for thermoplastic polymers was attracted several studies covering both material science and green technology. The use of plant fiber requires the issue of compatibility between matrix and fibers. This study treat the effect of chemical modification (alkali treatment, etherification treatment and esterification treatment) on the Alfa fiber surface, and its impact on mechanical and thermal properties of composites. To this end, the percentage of fibers was fixed at (20 wt.%), and to evaluate the effect of each chemical modification in Alfa reinforced polypropylene (PP), based on the mechanical and thermal properties of composites. Composites containing chemically modified Alfa fibers were found to possess improved mechanical and thermal properties when compared to non-treated composite. The highest improvement in Young’s modulus was observed with esterified fibers, with a 35% increase. Thermal stability is best increased using etherification-treated fiber, with gains in the temperature up to 80 °C.  相似文献   

11.
《Composites Part A》2001,32(8):1127-1131
Polycrystalline yttrium–aluminum garnet, Y3Al5O12 (YAG) fiber and α-alumina and YAG matrix composite fiber were prepared by the sol–gel method. α-Alumina and YAG matrix composite fiber with fine and homogeneous microstructure could be successfully fabricated by interpenetrating YAG in alumina matrix and adding α-alumina of seed particles to fibers. Effect of α-alumina seed particles and YAG on crystallization and microstructure of composite fiber were discussed. The size of alumina matrix of the composite fibers heated at 1600°C for 4 h was below 2 μm. The tensile of strength alumina fiber heat-treated at 1500°C was 0.2 GPa, while that of the composite fiber was 1.1 GPa.  相似文献   

12.
《Composites Part A》2003,34(5):393-401
Oxidized PAN-fiber felt was carbonized to 600, 1000, and 1800 °C, respectively. Different carbon/carbon composites (C/C composites) were prepared from oxidized PAN-fiber felt, the carbonized felts, and resol-type phenol–formaldehyde resin. These composites were then carbonized and graphized at temperatures of between 600 and 2400 °C. The C/C composite made with oxidized PAN-fiber felt showed a strong fiber/matrix bonding, and those developed from the carbonized felt (heat-treatment of 1800 °C) showed a poor fiber/matrix bonding. The graphitized composites reinforced with the oxidized PAN-fiber felt resulted in having a high flexural strength (325 MPa), and the graphitized composites reinforced with the carbonized felt (carbonized at 1800 °C) had a low flexural strength (9 MPa). It was found that the stress-orientation promoted the formation of the anisotropic texture around the fibers as well as between the fibers. This felt may very well be able to provide a low-cost route for producing multidimensional C/C composites.  相似文献   

13.
A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO4–20%Y2O3), has an average particle size of ~70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO4 in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.  相似文献   

14.
In this paper, a comparative study on the tensile properties of clay reinforced polypropylene (PP) nanocomposites (PPCN) and chopped basalt fiber reinforced PP–clay nanocomposites (PPCN-B) is presented. PP matrix are filled with 1, 3 and 5 wt.% of nanoclays. The ultimate tensile strength, yield strength, Young’s modulus and toughness are measured at various temperature conditions. The thermal conditions are included the room temperature (RT), low temperature (LT) and high temperature (HT). The basal spacing of clay in the composites is measured by X-ray diffraction (XRD). Nanoscale morphology of the samples is observed by transmission electron microscopy (TEM). Addition of nanoclay improves the yield strength and Young’s modulus of PPCN and PPCN-B; however, it reduces the ultimate tensile strength. Furthermore, the addition of chopped basalt fibers to PPCN improves the Young’s modulus of the composites. The Young’s modulus and the yield strength of both PPCN and PPCN-B are significantly high at LT (−196 °C), descend at RT (25 °C) and then low at HT (120 °C).  相似文献   

15.
A user-friendly heat-resistant modified polymer-based adhesive was developed to join C/C composites. After calcination at 1300 °C, the bonding effect of the adhesive reached the highest as more heat-resistant ceramics and high-temperature melting glass were generated in the adhesive. Its bonding strength was kept above 15 MPa during test from RT to 500 °C and the corresponding joints ruptured at C/C substrates. Besides, after repeated thermal-cycling at 1300 °C, the bonding strength at this temperature was maintained at about 12 MPa. For cured adhesive without calcination, its bonding strength could be maintained above 5 MPa during the whole heating process, which made it to have direct application in practice after curing.  相似文献   

16.
This study assesses the mechanical performance of metakaolin-based geopolymers reinforced with refractory aluminosilicate particles and fibers, after exposure to elevated temperatures. Compressive strength, shrinkage and flexural strength data reveal that the inclusion of refractory particles, both with and without additional refractory fibers, promotes improved post-exposure compressive and flexural strengths compared with samples without reinforcement. Specimens exposed to temperatures between 600 °C and 1000 °C exhibited reduced shrinkage with the inclusion of higher contents of particles and fibers, while retaining good mechanical strength. This behavior is attributed to the cracking control achieved in these materials, which contributes to the enhancement of their volumetric stability through the combined effect of a strong interaction between reinforcing particles and the matrix leading to crack deflection, and the potential densification of the matrix–fiber interface at increased exposure temperatures, rising the stiffness of the final composite. These results indicate that metakaolin-based geopolymer composites, if designed with the correct compatibility between matrix and filler characteristics, can act as an inexpensive castable composite refractory.  相似文献   

17.
Poly(ethylene-co-methacrylic acid) (EMAA) as a thermally activated healing agent in a high performance, high temperature tetra-glycidyl methylene dianiline (TGDDM)/diethyl toluene diamine (DETDA) mendable epoxy composite is reported for the first time. Despite curing above EMAAs melting point (Tm = 85 °C), healing occurred by incorporating a preliminary low temperature curing step of 5 h at 80 °C, prior to cure at 177 °C. Healing occurred via the pressure delivery mechanism derived from tertiary amine catalysed surface condensation reactions between EMAA and hydroxyl groups from the epoxy resin. Healing efficiencies of 36%, 55% and 105% were achieved after heating at 150 °C, 200 °C and 230 °C respectively, but decreased rapidly with continued healing. Healing at 150 °C and 200 °C revealed significant healing despite remaining in the glassy state. In addition, EMAA enhanced mode I interlaminar fracture toughness by more than 270% for both the DETDA and 4,4-DDS networks.  相似文献   

18.
This paper demonstrated a capric acid–palmitic acid–stearic acid ternary eutectic mixture/expanded graphite (CA–PA–SA/EG) composite phase change material (PCM) for low-temperature heat storage. The CA–PA–SA ternary eutectic mixture with a mass ratio of CA:PA:SA = 79.3:14.7:6.0 was prepared firstly, and its mass ratio in the CA–PA–SA/EG composite can reach as high as 90%. The melting and freezing temperatures of CA–PA–SA/EG composite were 21.33 °C and 19.01 °C, and the corresponding latent heat were 131.7 kJ kg−1 and 127.2 kJ kg−1. The CA–PA–SA/EG composite powders can be formed into round blocks by dry pressing easily, with much higher thermal conductivity than CA–PA–SA. Thermal performance test showed that the increasing thermal conductivity of CA–PA–SA could obviously decrease the melting/cooling time. Thermal property characterizations after 500 heating/cooling cycles test indicated that CA–PA–SA/EG composite PCM had excellent thermal reliability. Based on all these results, CA–PA–SA/EG composite PCM is a promising material for low-temperature thermal energy storage applications.  相似文献   

19.
《Composites Part A》2002,33(2):147-154
This paper describes the moisture absorption of glass/epoxy panels and tubes produced by filament winding. Panels have been immersed in distilled water for up to 10 years at temperatures up to 60°C to establish baseline data. Tubes of the same material were wound at ±55° to the tube axis with two diameters, 60 and 150 mm. These were also immersed in water and lower absorption levels were measured than in panels. Another series of tubes was subjected to internal and external water contact and it was established for both tube diameters that virtually no water enters through the inner wall. Reasons for this apparent internal barrier effect are examined.  相似文献   

20.
The tensile creep behavior of an oxide–oxide continuous fiber ceramic composite was investigated at 1000 and 1100 °C in laboratory air and in steam. The composite consists of a porous alumina–mullite matrix reinforced with laminated, woven mullite/alumina (Nextel?720) fibers, has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. The tensile stress–strain behavior was investigated and the tensile properties measured. Tensile creep behavior was examined for creep stresses in the 70–140 MPa range. The presence of steam accelerated creep rates and dramatically reduced creep lifetimes. The degrading effects of steam become more pronounced with increasing temperature. At 1000 °C, creep run-out (set to 100 h) was achieved in all tests. At 1100 °C, creep run-out was achieved in all tests in air and only in the 87.5 MPa test in steam. Composite microstructure, as well as damage and failure mechanisms were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号