首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an experimental and analytical study into the importance of the skin–flange thickness on the strengthening mechanics and fracture modes of z-pinned composite T-joints. The structural properties of unpinned and z-pinned carbon fibre–epoxy T-joints that had skin–flange thickness values between 2 mm (thin) and 8 mm (thick) were determined under tension (stiffener pull-off) loading. Experimental testing revealed that the capacity of z-pins to improve the structural properties was strongly dependent on the T-joint thickness. The joint properties increased at a quasi-linear rate with the skin–flange thickness, and z-pin pull-out tests showed that this was due to the increased crack bridging traction load and traction energy. The increase to the structural properties of the z-pinned T-joints with increasing thickness is explained using the bridging traction laws for z-pinned laminates.  相似文献   

2.
《Composites Part B》2000,31(6-7):445-452
Four full-scale reinforced concrete beams were replicated from an existing bridge. The original beams were substantially deficient in shear strength, particularly for projected increase of traffic loads. Of the four replicate beams, one served as a control and the remaining three were implemented with varying configurations of carbon fiber reinforced polymers (CFRP) and glass FRP (GFRP) composites to simulate the retrofit of the existing structure. CFRP unidirectional sheets were placed to increase flexural capacity and GFRP unidirectional sheets were utilized to mitigate shear failure. Four-point bending tests were conducted. Load, deflection and strain data were collected. Fiber optic gauges were utilized in high flexural and shear regions and conventional resistive gauges were placed in eighteen locations to provide behavioral understanding of the composite material strengthening. Fiber optic readings were compared to conventional gauges.Results from this study show that the use of fiber reinforced polymers (FRP) composites for structural strengthening provides significant static capacity increases approximately 150% when compared to unstrengthened sections. Load at first crack and post cracking stiffness of all beams was increased primarily due to flexural CFRP. Test results suggest that beams retrofit with both the designed GFRP and CFRP should well exceed the static demand of 658 kN m sustaining up to 868 kN m applied moment. The addition of GFRP alone for shear was sufficient to offset the lack of steel stirrups and allow conventional RC beam failure by yielding of the tension steel. This allowed ultimate deflections to be 200% higher than the pre-existing shear deficient beam. If bridge beams were retrofit with only the designed CFRP failure would still result from diagonal tension cracks, albeit at a 31% greater load. Beams retrofit with only the designed shear GFRP would fail in flexure at the mid-span at an equivalent 31% gain over the control specimen, failing mechanism in this case being yielding of the tension steel. Successful monitoring of strain using fiber optics was achieved. However, careful planning tempered by engineering judgement is necessary as the location and gauge length of the fiber optic gauge will determine the usefulness of the collected data.  相似文献   

3.
An addressable conducting network (ACN) enables the structural condition to be monitored by the electrical resistance between electrodes on surface of CFRP (carbon fiber reinforced polymer) structure. To improve the reliability of ACN for damage detection, the contact resistance between the electrodes and CFRP laminates needs to be minimized. In this paper, the silver nanoparticles electrodes were fabricated via printed electronics techniques on CFRP composite. The contact resistance between the silver electrodes and CFRP was measured with respect to various fabrication conditions such as the sintering temperature of silver nanoink and the surface roughness of CFRP laminates. The interfaces between silver electrode and carbon fibers were observed using scanning electron microscope (SEM). From the study, it was found that the lowest contact resistance of 0.3664 Ω could be achieved when the sintering temperature of the silver nanoink and surface roughness were 120 °C and 230 nm, respectively.  相似文献   

4.
《Composites Part A》2002,33(11):1487-1495
Low velocity impacts to fibre reinforced plastic composites cause a pattern of damage consisting in general of delamination, fibre breakage and matrix cracking. Such damage is accidental and may go unnoticed; therefore composite structures must be designed assuming impact damage exists. Previous work on flat composite laminates has resulted in a reasonable understanding of the mechanisms of compressive strength reduction. There are, however, many instances where curved laminates are used in structures where impact is likely. Furthermore, due to the mechanisms of strength reduction, it may be expected that curvature would have a significant effect on the behaviour of the laminates.The work described here consists of experimental measurement of the post-impact compressive strength of curved GFRP laminates. The laminates were of 8 plies of 0.3 mm thick pre-impregnated glass fibre/epoxy tape in a (0, ±45, 0°)s lay-up. Each laminate was 200 mm in length by 50 mm wide with the plane of curvature normal to the length. Laminates were impacted on the convex surface of the laminate by dropping a steel mass from 1 m vertically above it.Impacted laminates were loaded in compression and the out-of-plane displacements of the top and bottom surfaces were recorded. Final failure was typically due to fibre breakage occurring through the centre of the impacted area of the laminate. Possible differences in the impact response, and measurable differences in the sizes of the impact damage area, were found to arise from these curvatures, and differences were observed in their post-impact buckling behaviour. However, perhaps unexpectedly, the post-impact compressive strength for a curved laminate was found to be similar to that for a flat laminate. The failure loads for the impact damage laminates are shown to be comparable with those for laminates containing artificial delaminations.  相似文献   

5.
To investigate carbon fiber reinforced plastic (CFRP) composite processing, cutting experiments are performed using a Nd:YAG laser. Both ultraviolet (λ = 266 nm) and infrared (λ = 1064 nm) lights are examined to optimize the laser conditions for cutting CFRP. The experimental data are compared to the results calculated by heat conduction models. The good agreement between the experimental and calculated results indicates that the cutting quality depends on the wavelength of the cutting laser.  相似文献   

6.
With the growing interest to use composite materials and honeycomb sandwich panels in industrial fields, much attention is devoted to the development of non-destructive testing (NDT) techniques for the detection and evaluation of defects. In this work, scanning pulsed eddy current (PEC) was investigated and two features, representing the magnetic field intensity and conductivity, were used to characterise the different types of defects in carbon fibre reinforced plastics (CFRP) laminates and honeycomb sandwich panels. The experimental results show that the low energy impact from 4 J to 12 J, conductive and non-conductive insert defects can be effectively detected and evaluated using the proposed methods. The effectiveness was verified and the advantages of scanning PEC were addressed through comparative studies with flash thermography and shearography.  相似文献   

7.
The use of advanced composite materials such as Fiber Reinforced Polymers (FRPs) in repairing and strengthening reinforced concrete structural elements has been increased in the last two decades. Repairing and strengthening damage structures is a relatively new technique. The aims of this study was to investigate the efficiency and effectiveness of using Carbon Fiber Reinforced Polymer (CFRP) to regain shear capacity of shear-deficient normal weight high strength RC beams after being damaged by thermal shock. Sixteen high strength normal weight RC beams (100 × 150 × 1400 mm) were cast, heated at 500 °C for 2 h and then cooled rapidly by immersion in water, repaired, and then tested under four-point loading until failure. The composite materials used are carbon fiber reinforced polymer plates and sheets. The experimental results indicated that upon heating then cooling rapidly, the reinforced concrete (RC) beams exhibited extensive map cracking without spalling. Load carrying capacity and stiffness of RC beams decreased about 68% and 64%, respectively, as compared with reference beams. Repairing the thermal damaged RC beams allowed recovering the original load carrying without achieving the original stiffness. Repaired beams with CFRP plates with 90° and 45° regained from 90% to 99% of the original load capacity with a corresponding stiffness from 79% to 95%, whereas those repaired with CFRP sheet on the web sides and a combination of CFRP plates and sheet regained from 102% to 107% of the original load capacity with a corresponding stiffness from 81% to 93%, respectively. Finally, finite element analysis model is developed and validated with the experimental results. The finite element analysis showed good agreement as compared with the experimental results in terms of load–deflection and load–CFRP strain curves.  相似文献   

8.
The use of externally bonded carbon fiber-reinforced polymer (EB-CFRP) to strengthen deficient reinforced concrete (RC) beams has gained in popularity and has become a viable and cost-effective method. Fatigue behavior of RC beams strengthened with FRP is a complex issue due to the multiple variables that affect it (applied load range, frequency, number of cycles). Very few research studies have been conducted in shear under cyclic loading. The use of prefabricated CFRP L-shaped laminates (plates) for strengthening RC beams under static loading has proven to be technically feasible and very efficient. This study aimed to examine the fatigue performance of RC T-beams strengthened in shear for increased service load using prefabricated CFRP L-shaped laminates. The investigation involved six laboratory tests performed on full-size 4520 mm-long T-beams. The specimens were subjected to fatigue loading up to six million load cycles at a rate of 3 Hz. Two categories of specimens (unstrengthened and strengthened) and three different transverse-steel reinforcement ratios (Series S0, S1, and S3) were considered. Test results were compared with the upper fatigue limits specified by codes and standards. The specimens that did not fail in fatigue were then subjected to static loading up to failure. The test results confirmed the feasibility of using CFRP L-shaped laminates to extend the service life of RC T-beams subjected to fatigue loading. The overall response was characterized by an accelerated rate of damage accumulation during the early cycles, followed by a stable phase in which the rate slowed significantly. In addition, the strains in the stirrups decreased after the specimens were strengthened with CFRP, despite the higher applied fatigue loading. Moreover, the addition of L-shaped laminates enhanced the shear capacity of the specimens and changed the failure mode from brittle to ductile under static loading. Finally, the presence of transverse steel in strengthened beams resulted in a substantially reduced gain in shear resistance due to CFRP, confirming the existence of an interaction between the transverse steel and the CFRP.  相似文献   

9.
Ballistic performance analysis of ultra-high molecular weight polyethylene (UHMW-PE) is critical for the design of armour systems against ballistic threats. However, no validated modelling strategy has been published in literature for UHMW-PE composite that captures the penetration and damage mechanisms of thick targets impacted between 900 m/s and 2000 m/s. Here we propose a mechanistically-based and extensively validated methodology for the ballistic impact analysis of thick UHMW-PE composite. The methodology uses a non-linear orthotropic continuum model that describes the composite response using a non-linear equation of state (EoS), orthotropic elastic–plastic strength with directional hardening and orthotropic failure criteria. A new sub-laminate discretisation approach is proposed that allows the model to more accurately capture out-of-plane failure. The model is extensively validated using experimental ballistic data for a wide range of UHMW-PE target thicknesses up to 102 mm against 12.7 mm and 20 mm calibre fragment simulating projectiles (FSPs) with impact velocities between 400 m/s and 2000 m/s. Very good overall agreement with experimental results is seen for depth of penetration, ballistic limit and residual velocity, while the penetration mechanisms and target bulge behaviour are accurately predicted. The model can be used to reduce the volume of testing typically required to design and assess thick UHMW-PE composite in ballistic impact applications.  相似文献   

10.
This paper presents experimental and numerical investigations about the fire behaviour of reinforced concrete (RC) beams flexurally strengthened with carbon fibre reinforced polymer (CFRP) laminates. The main objective was to assess the efficacy of different fire protection systems and to evaluate the viability of their use in floors of buildings. Fire resistance tests were conducted on an intermediate scale oven to investigate the behaviour under fire (ISO 834) of loaded CFRP-strengthened RC beams. The fire protection systems comprised calcium silicate boards and layers of vermiculite/perlite cement based mortar, with thicknesses of 25 mm and 40 mm, applied along the bottom soffit of the beams that was directly exposed to fire. In addition, the anchorage zones of the CFRP laminates were highly thermally insulated in order to evaluate the benefits of this particular constructive detail. Member deflection and temperatures throughout the midspan section were measured and recorded during the tests. When the strengthening system was left unprotected in the exposed length of the beam, the CFRP laminate anchorage debonded after about 23 min. When the above mentioned fire protection materials were applied in the exposed length of the beams, the strengthening system debonded after between 60–89 min (25 mm thickness) and 137-167 min (40 mm). Two-dimensional finite element thermal models of all beams tested were also developed in order to predict the evolution of temperatures in the materials. The calculated temperatures compared reasonably well with those measured in the tests.  相似文献   

11.
A total of eight reinforced concrete slabs, 2440 × 600 × 125 mm strengthened with different layers and configurations of CFRP sheets were fabricated and tested. In addition, nonlinear finite element analysis (NLFEA) using ANSYS package was used to simulate the behavior of the test specimens. After reasonable validation of NLFEA with the experimental test results of companion slabs, NLFEA was expanded to provide a parametric study of eighteen slabs. The load–deflection, load strain, and failure modes obtained from the experimental test results and the NLFEA evidently confirmed that strengthening of under-reinforced concrete slabs with CFRP improves the flexural strength capacity and reduce the ductility. This was observed for both types of CFRP. The increase in the flexural strength and the reduction in the ductility increased with the increase in the number of CFRP layers. It was concluded that CFRP strengthening of slabs could be categorized as effective, economical, and successful only if substantial increase in the flexural strength capacity is achieved without changing the failure mode to a shear failure mode at the face of the supports or to a compression failure mode. Comparison between the two CFRP types, for almost equivalent applied area of CFRP, showed that the type of CFRP has significant influence on the behavior of the strengthened slabs. The difference is attributed to the difference in the mechanical properties and the bonding quality of the CFRP material.  相似文献   

12.
Corrosion of steel in reinforced concrete leads to several major defects. Firstly, a reduction in the cross-sectional area of the reinforcement and in its ductility results in premature bar failure. Secondly, the expansion of the corrosion products causes concrete cracking and steel–concrete bond deterioration and also affects the bending stiffness of the reinforced concrete members, causing a reduction in the overall load-bearing capacity of the reinforced concrete beams. This paper investigates the validity of a repair technique using Near Surface Mounted (NSM) carbon-fibre-reinforced polymer (CFRP) rods to restore the mechanical performance of corrosion-damaged RC beams. In the NSM technique, the CFRP rods are placed inside pre-cut grooves and are bonded to the concrete with epoxy adhesive.Experimental results were obtained on two beams: a corroded beam that had been exposed to natural corrosion for 25 years and a control beam, (both are 3 m long) repaired in bending only. Each beam was repaired with one 6-mm-diameter NSM CFRP rod. The beams were tested in a three-point bending test up to failure. Overall stiffness and crack maps were studied before and after the repair. Ultimate capacity, ductility and failure mode were also reviewed. Finally some comparisons were made between repaired and non-repaired beams in order to assess the effectiveness of the NSM technique. The experimental results showed that the NSM technique improved the overall characteristics (ultimate load capacity and stiffness) of the control and corroded beams and allowed sufficient ductility to be restored to the repaired corroded elements, thus restoring the safety margin, despite the non-classical mode of failure that occurred in the corroded beam, with the separation of the concrete cover due to corrosion products.  相似文献   

13.
Promotion of massive application of carbon fiber reinforced plastics (CFRPs) in the industry can be accomplished by using faster and more flexible technologies such as laser cutting. The anisotropic and heterogeneous features of the CFRP make laser processing very challenging.A comprehensive study on the cut performance of a CO2 laser to process sheets (3 mm thick) of a CFRP composite is presented. A high-beam quality CO2 laser has been used in order to ascertain the capabilities of CO2 laser cutting machines, widely used in metalworking applications, on the machining of this material. On the other hand, the influence of processing parameters, in both CW and pulsed mode, on the cut quality was studied.Cuts with a minimum heat affected zone, about 540 μm, were achieved using a high-beam quality CO2 laser working in pulsed mode. In consequence, the CFRP strength remains practically unaffected compared to more conventional mechanical machining.  相似文献   

14.
Innovative composite materials for flexural strengthening of concrete structural members have been recently proposed by construction market. They are able to overcome some issues related to traditional composite material, such as high cost and fire resistance. They include composite materials made of different types of organic matrix (i.e., cement-based mortar and pozzolan-reaction cementitious mortar) and reinforcement (i.e., steel fibre fabric). An experimental investigation has been carried out on prestressed-concrete beams strengthened in flexure with traditional (i.e., pultruded carbon laminate bonded with epoxy resin) and different innovative composite externally bonded systems (i.e., steel fabrics glued with different types of adhesive) in order to compare their structural performance between them and with respect to unstrengthened specimens. At this aim, a total of fifteen specimens characterized by an overall length of 2400 mm and cross-sectional dimensions of 120 by 140 mm were subjected to four-point-bending tests. Test results highlighted the high potential of the innovative composite systems for flexural strengthening applications and similar effectiveness compared with the pultruded carbon laminates. The recorded response of the specimens is presented and discussed and the measured strength and deflection of the specimens are estimated. Comparison between theoretical prediction and experimental results shows a good agreement.  相似文献   

15.
《Composites Part A》2005,36(10):1430-1439
Static strength tests were carried out for cured carbon nano-fiber (CNF) dispersed resin as tow-phase composites and for CFRP laminates using CNF dispersed resin as three-phase composites. To obtain these CFRP laminates, the CNF dispersed resin was impregnated to CF reinforcement and cured by hot press. The CNF used was a cup-stacked type of nano-fiber, CARBERE®, made by GSI CREOS Corporation, Japan. Two CNF aspect ratios of 10 and 50 were employed. These fiber lengths of the CNF were controlled about 1000 nm (AR10) and 5000 nm (AR50), respectively. The CNF was dispersed to EPIKOTE 827® epoxy resin in two values of CNF weight ratios, 5 and 10% to the resin. TORAYCA® C6343 plain woven fabric was used for reinforcement of the CFRP laminates. The cure condition with the agent of aromatic amine EPIKURE W® was 100 °C for two hours followed by a post cure of 175 °C for 4 h. The static strength tests led to the conclusion that the dispersion of CNF into epoxy improves mechanical properties of the tow-phase composites, and that CFRP laminates with CNF dispersed resin also exhibit higher compressive strength than CFRP laminates without CNF as control. Possibilities of improvement in mechanical properties were confirmed in the two and three-phase composites. Moreover, a proportional tendency in strength improvements to CNF weight content was found in the two present composites so far in the present test results.  相似文献   

16.
This paper presents the results of tensile mechanical properties of FRP reinforcement bars, used as internal reinforcement in concrete structures, at elevated temperatures. Detailed experimental studies were conducted to determine the strength and stiffness properties of FRP bars at elevated temperatures. Two types of FRP bars namely: carbon fibre reinforced polyester bars of 9.5 mm diameter and glass fibre reinforced polyester bars of 9.5 mm and 12.7 mm diameter were considered. For comparison, conventional steel reinforcement bars of 10 mm and 15 mm diameter were also tested. Data from the experiments was used to illustrate the comparative variation of tensile strength and stiffness of different types of FRP reinforcing bars with traditional steel reinforcing bars. Also, results from the strength tests were used to show that temperatures of about 325 °C and 250 °C appear to be critical (in terms of strength) for GFRP and CFRP reinforcing bars, respectively. A case study is presented to illustrate the application of critical temperatures for evaluating the fire performance of FRP-reinforced concrete slabs.  相似文献   

17.
Results are presented studying the contribution of particle toughening to impact damage resistance in carbon fibre reinforced polymer materials. Micro-focus X-ray computed tomography and synchrotron radiation computed laminography were used to provide a novel, multiscale approach for assessing impact damage. Thin (1 mm thick) composite plates containing either untoughened or particle-toughened resin systems were subjected to low velocity impact. Damage was assessed three-dimensionally at voxel resolutions of 0.7 μm and 4.3 μm using SRCL and μCT respectively; the former being an innovative approach to the laterally extended geometry of CFRP plates. Observations and measurements taken from μCT scans captured the full extent of impact damage on both material systems revealing an interconnected network of intra- and inter-laminar cracks. These lower resolution images reveal that the particle-toughened system suppresses delaminations with little effect on intralaminar damage. The higher resolution images reveal that the particles contribute to toughening by crack deflection and bridging.  相似文献   

18.
This work evaluated the possibility of using silicon solar cells as load-carrying elements in composite sandwich structures. Such an ultra-light multifunctional structure is a new concept enabling weight, and thus energy, to be saved in high-tech applications such as solar cars, solar planes or satellites. Composite sandwich structures with a weight of ~800 g/m2 were developed, based on one 140 μm thick skin made of 0/90° carbon fiber-reinforced plastic (CFRP), one skin made of 130 μm thick mono-crystalline silicon solar cells, thin stress transfer ribbons between the cells, and a 29 kg/m3 honeycomb core. Particular attention was paid to investigating the strength of the solar cells under bending and tensile loads, and studying the influence of sandwich processing on their failure statistics. Two prototype multi-cell modules were produced to validate the concept. The asymmetric sandwich structure showed balanced mechanical strength; i.e. the solar cells, reinforcing ribbons, and 0/90° CFRP skin were each of comparable strength, thus confirming the potential of this concept for producing stiff and ultra-lightweight solar panels.  相似文献   

19.
An organomodified surface nanoclay reinforced epoxy glass-fiber composite is evaluated for properties of mechanical strength, stiffness, ductility and fatigue life, and compared with the pristine or epoxy glass-fiber composite material not reinforced with nanoclays. The results from monotonic tensile tests of the nanoclay reinforced composite material at 60 °C in air showed an average 11.7% improvement in the ultimate tensile strength, 10.6% improvement in tensile modulus, and 10.5% improvement in tensile ductility vs. these mechanical properties obtained for the pristine material. From tension–tension fatigue tests at a stress-ratio = +0.9 and at 60 °C in air, the nanoclay reinforced composite had a 7.9% greater fatigue strength and a fatigue life over a decade longer or 1000% greater than the pristine composite when extrapolated to 109 cycles or a simulated 10-year cyclic life. Electron microscopy and Raman spectroscopy of the fracture and failure modes of the test specimens were used to support the results and conclusions. This nanocomposite could be used as a new and improved material for repair or rehabilitation of external surface wall corrosion or physical damage on piping and vessels found in petrochemical process plants and facilities to extend their operational life.  相似文献   

20.
《Composites Part B》2007,38(5-6):712-719
Flat plate slab system is widely adopted by engineers as it provides many advantages . The system can reduce the height of the building, provide more flexible spatial planning due to no beams present, and further reduce the material cost. However, the main problem in practice is the brittle failure of flat plate slab under punching shear. In this paper, the punching shear behavior has been studied and an experimental work using carbon fiber reinforced polymer (CFRP) rods as shear reinforcement has been conducted in flat plate slab system.This exploratory research is to study the behavior of the flat plate slab with CFRP-rods reinforced in punching shear zone under constant gravity load and lateral displacements in a reversed cyclic manner. Three specimens of interior column-slab connection specimens were tested including one standard specimen without any shear reinforcement, the second one reinforced with CFRP-rods and the third one reinforced with stud rails as the reference to the second one. The slabs were 3000 mm long × 2800 mm wide × 150 mm deep, and were simply supported at four corners. Punching shear failure occurred for the standard specimens at a lateral drift-ratio, lateral drift divided by the length of vertical member, of approximately 5%. The specimen reinforced by CFRP-rods had significant flexural yielding and sustained deformations up to a drift ratio of approximately 9% without significant losses of strength, and punching shear was not observed in this specimen. The displacements increased up to 1.79 times larger than that of the standard specimen. And this specimen showed 42% superior ductile performance than the standard specimen and even the same capability with the stud-rail reinforced specimen. The results of the experiment indicate that CFRP-rods using in the flat slab has a better foreground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号