共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
为了改善图像增强效果,突出图像主体,研究了一种基于图像特征分块的分数阶微分图像增强新算法。该算法通过构造分数阶微分掩模算子,根据图像特征分块的结果设定分数阶阶数,形成分数阶阶数矩阵,然后将其代入掩模算子,并与原图像进行运算。实验中分别对原图像和加入了高斯噪声的图像进行处理,并比较了不同参数时图像增强效果。实验结果表明,该算法能较大地增强图像主体部分的纹理,同时一定程度上抑制了背景及平滑区域图像噪声的增加。在图像平均梯度略低于传统分数阶微分增强算法的程度上,该算法对图像纹理的增强幅度更大。 相似文献
4.
针对传统的整数阶微分图像边缘检测算子存在的边缘模糊不清、受噪声影响大等问题,该算法从改进传统的整数阶微分Sobel算子入手,以分数阶微分理论为基础推导出了分数阶微分Sobel算子,结合Sobel算子边缘检测方法,将整数阶微分Sobel算子作为滤波器与分数阶微分Sobel算子作卷积运算,改进了整数阶微分Sobel算子。整数阶微分滤波后的分数阶微分Sobel算子成功地解决了传统的边缘检测算子存在的准确性低、抗噪性差等问题。理论研究与实验结果表明,该边缘检测算子对图像的边缘细节特征刻画得更精细,抗噪性更强,优于常用的整数阶微分边缘检测算子,边缘检测效果很好。 相似文献
5.
用分数阶微分提取图像边缘 总被引:1,自引:0,他引:1
文章是分数阶微分在图像处理中的尝试性应用。首先通过理论上分析得出分数阶微分可以大幅提升信号高频成分,增强信号的中频成分,非线性保留信号的甚低频。据此分析得出分数阶微分应用于图像边缘信息提取将获得高于传统基于一、二阶微分的方法的信噪比。然后由经典的分数阶微分定义出发,推导出了分数阶差分方程,构建了近似的分数阶Tiansi微分模板。最后通过图像边缘提取的实验表明:基于分数阶微分算子不仅可以有效提取图像边缘,而且比整数阶微分算子具有更高的信噪比。为拓展分数阶微分的应用领域,进行了有意义的探索。 相似文献
6.
目的 传统的边缘检测算法对于具有分形结构等复杂纹理的图像和弱边缘图像检测精度较低。方法 针对该问题,将Grünwald-Letnikov(G-L)分数阶微分引入到Canny算子中,设计了一种新的基于G-L定义的分数阶微分掩模,在分数阶阶次的选取上更灵活(阶次可取正数和负数),分析了分数阶微分掩模中的参数与边缘检测精度之间的关系,并引用了3种评价指标来评定算法的性能。结果 将G-L分数阶梯度代替Canny中传统的梯度算子,不但可以增强图像的细节信息,而且可以增强灰度均匀和弱纹理区域的梯度信息,从而提高了边缘检测的精度和稳定性;设计了一种新的基于G-L定义的分数阶微分掩模,该掩模在分数阶阶次的选取上更灵活,具有差分方向可调性,其应用范围更广;并通过实验给出了边缘检测精度与模板参数之间的关系,从而为最佳模板参数的选取提供了依据。用综合图像和真实图像进行了实验,并与传统的5种边缘检测算子和3种基于分数阶微分的边缘检测算法进行比较,从检测精度,检测效率和抗噪性能3方面验证本文算法性能,大量的实验结果表明,本文算法在检测精度,检测效率和抗躁性能方面都有较大的提升。结论 理论分析和实验结果均表明,该算法可用于检测图像中的纹理细节和弱边缘,且检测精度和稳定性都有明显的提高,本文算法是Canny算法应用的一个重要延伸。 相似文献
7.
针对传统的煤尘图像滤噪方法迭代过程长、滤噪效果不理想、纹理保持能力差等问题,对现有的滤噪方法进行改进,建立了基于分数阶微分模型的自适应滤噪算法。改进算法对参数u的变化梯度进行调整,从整数阶扩展到分数阶;根据区域特征分别对算法中的各项参数进行自适应选择。实验结果表明,改进后的滤噪算法收敛速度快,迭代次数少,滤噪效果好,纹理保持能力强,且其检测滤噪效果能力的量化指标获得了很好的改善。 相似文献
8.
9.
李军成 《计算机工程与应用》2014,50(21):14-18
现有的分数阶微分边缘检测算子大都是基于0~1阶分数阶微分而构造,鲜有文献讨论基于1~2阶分数阶微分的边缘检测算子。为此,分析了1~2阶分数阶微分对信号的作用,基于1~2阶分数阶微分构造了一种新的边缘检测掩模算子。实验结果表明,该算子不仅优于常用整数阶微分算子,而且比现有的一些0~1阶分数阶微分算子具有更好的边缘检测效果。 相似文献
10.
分数阶微分的图像滤波和增强方法多数通过尝试不同的分数阶得到结果,并以固定分数阶进行纹理细节提取,这种方法对于复杂环境难以鲁棒的增强整幅图像中的纹理细节。为此,我们提出了一种自适应的分数阶微分的复合双边滤波方法。通过分析纹理特性,建立幅值频率非线性联合指数模型自适应选择分数阶微分阶数检测图像纹理细节,有效克服图像中纹理细节的变化;在双边滤波的框架下,引入自适应分数阶微分构建的引导图像,借助细节转移方法,确保在图像去噪的同时保持/增强纹理图像细节。实验结果表明,自适应分数阶微分的复合双边滤波算法在图像滤波、去雾、细节增强等计算机视觉应用方面具有良好的效果。 相似文献
11.
传统的基于整数阶微分的图像边缘检测算子,存在对噪声敏感、抗干扰能力差,提取图像边缘信息简单等缺点。分数阶微分能加强信号的高频成分,同时对信号的中低频成分进行非线性保留。本文根据分数阶微分的G L定义,推导出分数阶微分的差分表达式,构造5×5大小的分数阶微分算子模板,并采用Sobel算子、Prewitt算子和Laplacian算子进行图像边缘检测的仿真实验。仿真实验结果表明,相比整数阶微分算子,分数阶微分算子抗噪声性能强,能有效保留图像平滑区域中的纹理细节信息,图像边缘检测结果的信息也更为丰富。 相似文献
12.
13.
遗留物检测是智能视频监控系统的核心功能,遗留物一般较小,所处环境复杂,传统的运动目标检测算法直接用于遗留物检测效果一般.提出了一种基于帧间差分与边缘差分的遗留物检测算法,首先进行帧间差分得到运动目标区域,然后将当前帧图像和前一帧的背景图像进行边缘差分运算得到运动目标的边缘,融合二次差分的结果即可得到运动目标的完整轮廓特征,最终通过判断运动目标在场景中的滞留时间是否达到或超过报警系统设置的阈值来标示遗留物,供智能视频监控系统处理.实验结果证明该算法实时性好且识别率较高. 相似文献
14.
图像的边缘是图像最重要的特征之一。由于边缘和噪声都是图像的高频分量,提取的图像边缘总是受到噪声的污染。针对边缘检测中存在的噪声问题,本文根据Mallat快速小波变换算法的思想,提出用高斯函数和其一阶导数分别作为低通和高通滤波器对图像进行多尺度分析。为了精确定位图像边缘,对各尺度的低频、水平、垂直和对角分量不进行下采样。然后提取不同尺度上的系数,利用多尺度积对噪声严重的图像进行边缘检测。最后根据边缘点的梯度方向,采用改进的局部梯度极大值搜索方法获得图像的单像素边缘。实验结果表明本文所提出的方法,能在被噪声污染严重的图像中提取图像的单像素边缘,且边缘图像信噪比高。 相似文献
15.
16.