首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
简单介绍了老龙口水利枢纽导流洞的工程地质概况及施工期安全监测设计,详细阐述了施工期安全监测成果,对围岩的变形规律及特征进行了深入的分析。目前该导流洞开挖支护已完成,围岩变形较小,表明围岩已趋于稳定。安全监测为设计与施工提供了可靠的依据。  相似文献   

2.
厄瓜多尔索普拉多拉水电站导流洞施工期收敛变形监测按照“新奥法”施工的基本理念,在分析施工条件的基础上,提出了导流洞的施工收敛监测布置方案.通过对典型断面收敛监测变形成果进行分析,了解到该隧洞施工期收敛变形呈衰减形和直线形发展,为施工期围岩支护措施的设计提供了参考.  相似文献   

3.
 安全监测是保障大型地下厂房施工期和运行期围岩稳定的重要技术手段,亦可用于反馈设计和指导施工。利用施工期和运行期安全监测成果,分析研究了白莲河抽水蓄能电站地下厂房围岩变形、支护锚杆应力、锚索锚固力、格构梁钢筋应力等的变化过程和相互影响规律,并对地下厂房围岩的稳定性进行了综合评价。结果表明:电站地下厂房围岩最大表面变形15.79 mm,最大锚杆应力150.5 MPa,最大钢筋拉应力63.76 MPa,最大钢筋压应力75.56 MPa,且各项测值已趋于稳定,围岩在经历施工期快速变形和蠕动变形后已经趋于稳定。  相似文献   

4.
介绍了前坪水库泄洪洞的工程地质概况及施工期安全监测设计,通过安全监测仪器数据对比,对围岩的变形、应力规律及特征进行了深入的分析。结果表明:围岩变形与台阶开挖关系密切,在施工期间,随着开挖过程的不断进行,围岩变形不断增大,一般情况下,变形以突发性为主,并与台阶开挖有关,开挖上部台阶时变形量相对较小,开挖下部台阶时变形量相对较大,如果台阶高度过大、进度快,将造成应力突然释放的能量过大,从而导致围岩变形突变。前坪水库泄洪洞工程施工已完成,围岩变形现阶段已处于稳定状态,安全监测设计应根据工程进度及揭露的地质情况进行相应的调整,安全监测需进行动态设计。  相似文献   

5.
阿海水电站工程区主要为砂板岩互层状岩体,导流洞部分洞段围岩为相对较软的板岩及具有各项异性的砂板岩互层状岩体。洞室开挖后由于二次应力的分布有可能产生围岩变形,因此对导流洞的围岩稳定性的预测分析对工程具有重要的指导意义。本文利用围岩应变率及围岩单轴抗压强度两种围岩稳定性评价方法,以及对导流洞围岩应力及变形进行有限元模拟分析,并结合施工后导流洞变形监测结果,对整个洞室围岩稳定性进行综合分析评价。  相似文献   

6.
三峡地下电站主厂房跨度大、覆盖薄,国内外少有。文中对三峡地下电站主厂房施工期的安全监测资料进行了初步分析,监测成果表明,至主厂房第2层开挖支护施工结束,主厂房围岩深部变形最大为4.86mm,锚杆应力大部分小于100MPa,均在设计允许范围内,目前主厂房围岩是稳定安全的,施工期安全监测在反馈设计、指导施工中发挥了重要作用。  相似文献   

7.
以某水电站长引水隧洞为依托,对施工期围岩变形、永久围岩变形和锚固应力等,以及跨沟明管段衬砌钢筋应力进行监测设计,从而针对长引水隧洞监测设计关键技术进行初步探讨。  相似文献   

8.
以某水电站长引水隧洞为依托,对施工期围岩变形、永久围岩变形和锚固应力等,以及跨沟明管段衬砌钢筋应力进行监测设计,从而针对长引水隧洞监测设计关键技术进行初步探讨。  相似文献   

9.
三峡地下电站主厂房施工期围岩变形性态分析   总被引:1,自引:0,他引:1  
三峡地下电站主厂房跨度大、覆盖薄,国内外少有.本文对三峡地下电站主厂房施工期的围岩变形监测资料进行了初步分析,监测成果表明,至主厂房第Ⅵ层开挖施工结束,主厂房围岩深部最大变形为17.59mm目前位移变化已渐趋于稳定,且在设计允许范围内,主厂房Ⅳ层以上围岩是稳定安全的;施工期安全监测在反馈设计、指导施工中发挥了重要作用.  相似文献   

10.
三里坪地下厂房洞室群通过二维弹塑性有限元分析进行支护,并在施工期根据安全监测情况,布置了一定数量的应力应变仪器对围岩变形进行监测,增设了一定数量的张拉锚杆,确保了厂房洞室群围岩的安全稳定。  相似文献   

11.
王军  杜鑫 《人民长江》2016,47(20):66-69
杨房沟水电站两条导流隧洞均布置在右岸,上游洞段为变质粉砂岩夹炭质板岩,下游洞段为花岗闪长岩。变质粉砂岩洞段围岩稳定性较差,对施工围岩安全有较大影响。为了保证开挖、支护施工的进度与安全,在导流隧洞及进出口边坡设立了围岩受力及变形监测系统。系统的实际运行表明,监测成果在隧洞开挖及支护施工中起到了重要作用,根据监测成果调整的施工方案确保了施工的顺利进行,保证了工期。对监测系统的方案设计、运行、调整以及资料分析、所发挥的作用进行了介绍,以期为类似工程监测提供参考。  相似文献   

12.
将新奥法引入到河源市区水源工程引水隧洞围岩的施工过程。通过光面爆破、喷锚支护以及围岩变形监测等施工技术手段,有效地防止了破碎围岩及不良地质段围岩可能产生的变形、松动,围岩的完整性得到了维护,保证了施工安全,取得了良好效果,可供类似工程施工时参考借鉴。  相似文献   

13.
以实际深埋软岩引水隧洞施工为背景,在对导致大变形的围岩压力性质认识和力学行为分析的基础上,结合室内实验、数值模拟手段、施工变形监测数据和围岩—衬砌接触压力现场试验,研究了隧洞开挖后洞周位移分布特征、围岩变形和支护受力随时间发展规律。研究结论表明:(1)大主应力方向为垂直方向的高地应力环境中,隧洞软岩大变形以挤压型变形为主;(2)开挖面和二衬对约束隧洞空间位移分布具有重要作用;(3)软弱围岩变形发展和支护受力具有明显的流变特性和时间效应,及时施加二衬能有效限制流变变形的发展。在研究基础上提出了一些施工中有益于控制围岩稳定性的建议。  相似文献   

14.
齐热哈塔尔水电站工程发电引水隧洞存在隧洞长、埋深大、高地应力、岩爆和高地温等复杂工程地质问题,因此,对隧洞围岩稳定、施工期安全、隧洞支护荷载和衬砌型式等的研究至关重要。通过采用现场围岩变形和地应力释放测试、数值模拟反演分析和衬砌时机试验研究等方法,分析了深埋长隧洞高地应力与岩爆的产生机理、岩爆特征和破坏形式,以及高地温的成因,研究了高地应力、岩爆和高地温对施工、衬砌荷载和衬砌型式的影响。针对上述问题对策如下:对于高地应力围岩洞段,开挖完成后,初期支护采取时间滞后的方式消减高地应力;对于岩爆洞段,采取主动预防措施和强施工支护,确保施工安全,将岩爆发生的可能性及岩爆的危害降到最低;对高地温洞段开挖采取通风、在掌子面和风带口放置冰块、对掌子面和附近岩体喷水等降温措施,而且完善和优化了隧洞一次支护和二次衬砌设计。这些措施保证了引水隧洞的施工和运行安全,对类似地质条件的隧洞工程设计和施工具参考价值。  相似文献   

15.
在对深埋隧洞破坏模式进行分析的基础上,基于分析结果针对性建立其安全监测系统的布置方法,可以有效维护隧洞施工期和运行期的长效安全。以滇中引水工程某深埋隧洞为例,在综合考虑工程地质条件、围岩状态、开挖形式的基础上,首先选取典型隧洞断面进行数值模拟,采用有限元强度折减法进行深埋隧洞典型破坏模式分析,获得了隧洞围岩应力与塑性区分布,得到了深埋隧洞潜在破坏面的分布情况。结合数值模拟分析结果,确定了安全监测原则及安全监测重点防控点。针对深埋隧洞潜在破坏面进行了两类围岩的安全监测测点布置。研究成果可为深埋隧洞工程安全监测系统优化设计提供依据。  相似文献   

16.
针对公路与铁路小垂距交叉软岩隧道的特点,以云南某上穿公路隧道为背景,对该隧道右幅交叉段进行隧道净空收敛、围岩内部结构应力、围岩深部位移等项目的监测。根据监测结果,分析该隧道的围岩和支护结构的变形以及受力特点。结果表明,隧道右幅交叉段Ⅴ级围岩采用三台阶临时仰拱法开挖是可行的,能够有效地控制围岩变形,围岩稳定变形时间在30 d左右。监测成果可用于对隧道稳定性进行评估与预警,以便及时调整支护参数,保证隧道施工安全性。  相似文献   

17.
介绍了溪洛渡水电站右岸尾水洞的施工进度安排和安全监测仪器布置。根据已获得的监测数据,对右岸尾水洞的围岩变形和围岩应力进行了分析,评价了右岸尾水洞围岩目前的稳定状态。分析结果表明,由于开挖支护控制较好,溪洛渡水电站右岸尾水洞围岩总体变形不大。  相似文献   

18.
西南某深埋长隧道位于全新世区域活动断裂带。为了解断裂带的地应力分布情况,现场开展了钻孔岩石取芯分析工作。根据钻孔实测资料,利用莫尔-库仑模型,对隧洞周围的初始地应力场的分布特征进行了模拟分析,掌握了应力分布规律。分析结果表明,无支护条件下,隧洞围岩在断裂带出露处可发生极严重变形,对施工安全有重大影响。建议施工时,采用超前支护,开挖后及时实施二次衬砌等措施,以保证施工安全。  相似文献   

19.
隧洞软岩大变形严重威胁到 TBM 安全运行,软弱围岩的变形具有明显的蠕变特性。针对某深埋输水隧洞软岩TBM掘进洞段的围岩变形和支护结构安全展开分析和评价,研究高应力条件下软岩的蠕变特性,比较不同支护方式管片结构的受力状态。研究表明:软岩洞段TBM掘进采取大断面扩挖和管片+豆砾石层+聚乙烯泡沫板缓冲层支护,缓冲层的施加明显改善管片的受力状态,有效地提高了管片结构的安全裕度。建议在类似的深埋软岩隧洞工程中,开展有针对性的岩体流变试验和变形监测,选取合适扩挖断面尺寸和支护方式,给围岩变形预留足够空间,为TBM的顺利掘进提供可靠的作业条件。研究成果为保障隧洞顺利掘进提供了技术支持,也可为其他同类超长深埋隧洞的修建提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号