首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
N-Acetylglucosaminyltransferase I (GnT-I), which catalyzes the transfer of an N-acetylglucosamine residue from UDP-N-acetylglucosamine to the alpha1,3-linked mannose on Man5GlcNAc2 (M5), is a critical enzyme for the synthesis of high-mannose-type to complex-type glycan structures in N-linked glycan processing. We developed a large-scale preparation system for recombinant human GnT-I (hGnT-I) using the maltose binding protein (MBP) fusion system to facilitate the chemoenzymatic route for complex-type N-linked glycan synthesis. MBP-fused GnT-I was purified by affinity chromatography on an amylose resin column. The relative activity of MBP-fused GnT-I toward high-mannose-type N-linked oligosaccharides was 100% for Man5GlcNAc2, 52% for Man3GlcNAc2, 17% for Man6GlcNAc2. MBP-fused GnT-I exhibited optimal activity at pH 6.5-9.5 and was more active between pH 6.5-9.0. The optimum temperature for MBP-fused GnT-I activity was 40 degrees C, but the enzyme was active between 0-70 degrees C. Mn2+ and Co2+ were critical for the enzyme activity, while Zn2+ and Ca2+ inhibited the activity. Kinetic analysis of the purified enzyme showed an apparent K(m) value of 0.483 mM and a V(max) of 101 nmol/mg/min for M5. Immobilization of MBP-fused GnT-I on the amylose resin led to an 80% yield of the high mannose-type-of oligosaccharide.  相似文献   

2.
The organophosphorus pesticide hydrolase was purified to homogeneity from Burkholderia sp. NF100 by detergent extraction of the cell membrane fraction, anion-exchange, chromatofocusing, and gel filtration chromatographies. The purified enzyme had a molecular mass of 55 kDa and a pI 5.8, and the hydrolase activity was strongly inhibited by EDTA, dithiothreitol (DTT), Hg2+ and 1,10-phenanthroline. The optimum pH and temperature for the enzyme activity were 8.0 and 40 degrees C, respectively. The enzyme hydrolyzed five organophosphorus pesticides.  相似文献   

3.
4.
A cDNA fragment encoding a mature neutral endoglucanase with 366 amino acids was cloned from Volvariella volvacea WX32. Online analysis of amino acid sequence homology showed that the endoglucanase, designated as NCel5A, belongs to glycoside hydrolase family 5. The recombinant plasmid, pPIC9K-ncel5A, was transformed into Pichia pastoris GS115 by electroporation. Screening of multiple copies of the gene ncel5A in transformants was performed on YPD plates containing geneticin G418. One transformant expressing the highest recombinant NCel5A (rNCel5A) activity, numbered as GSNCel4-3, was chosen for optimizing expression conditions. In optimized conditions, the expressed rNCel5A activity was up to 4612 U/ml. SDS-PAGE and enzyme activity assays demonstrated that the rNCel5A, a glycosylated protein with an M.W. of about 42 kDa, was extracellularly expressed in P. pastoris. The rNCel5A showed the highest activity at pH 7.5 and 55°C and was stable at a broad pH range of 6.0-9.0 and at a temperature of 55°C or below.  相似文献   

5.
A glycosyl hydrolase family 5 endo-β-mannanase gene (man5F63) was cloned from Penicillium freii F63 and overexpressed in Pichia pastoris. man5F63 contained an open reading frame of 1260 bp that encoded a polypeptide of 419 amino acids including a putative 18-residue signal peptide. The recombinant enzyme (rMan5F63) was secreted into the culture supernatant to near electrophoretic homogeneity with a high yield (1.1 gl(-1) in flask). Its apparent molecular weight was approximately 72.0 kDa, 29.0 kDa higher than the theoretical molecular mass. rMan5F63 was optimal at pH 4.5 and 60 °C and exhibited good stability over a broad pH range from acidic to alkaline (>85.0% activity at pH 4.0-9.0, >70.0% activity at pH 10.0 and 43.7% even at pH 12.0). The activity of rMan5F63 was significantly enhanced in the presence of Co(2+), Cu(2+), Mn(2+) and β-mercaptoethanol and was strongly inhibited by Hg(2+) and SDS. The specific activity, K(m) and V(max) values were 47.5 U mg(-1), 7.8 mg ml(-1) and 70.4 μmol min(-1)mg(-1), respectively, for locust bean gum, and 40.3 U mg(-1), 2.3 mg ml(-1) and 61.7 μmol min(-1)mg(-1), respectively, for konjac flour. All these favorable enzymatic properties make it cost-effective to commercialization and valuable in various industries.  相似文献   

6.
The intracellular proteinase of Lactobacillus casei ssp. casei LLG was isolated in the cytoplasmic fraction with 0.05 M Tris-HCl buffer (pH 7.5). The enzyme was purified by the fast protein liquid chromatography system equipped with ion-exchange and gel filtration chromatographies. This proteinase comprised a single monomeric form and had a molecular weight of about 55 kDa and an isoelectric point near pH 4.9. The optimum pH and temperature for the enzyme activity were determined to be pH 6.5 and 37 degrees C, respectively. The enzyme was inactivated by metal-chelating compounds (EDTA, 1,10-phenanthroline) and less affected by serine proteinase inhibitors (diisopropylfluorophosphate, phenylmethylsulfonyl fluoride). Proteinase activity was increased by Ca++, Mn++, and Co++, and inhibited by Cu++, Mg++, and Zn++. The activity of this enzyme to hydrolyze casein appeared to be more active on beta-casein than alphas1-casein and kappa-casein as monitored by polyacrylamide gel electrophoresis.  相似文献   

7.
Serratia marcescens isolated from raw milk was found to produce extracellular lipase. The growth of this organism could contribute to flavor defects in milk and dairy products. Serratia marcescens was streaked onto spirit blue agar medium, and lipolytic activity was detected after 6 h at 30 degrees C and after 12 h at 6 degrees C. The extracellular crude lipase was collected after inoculation of the organism into nutrient broth and then into skim milk. The crude lipase was purified to homogeneity by ion-exchange chromatography and gel filtration. The purified lipase had a final recovered activity of 45.42%. Its molecular mass was estimated by SDS-PAGE assay to be 52 kDa. The purified lipase was characterized; the optimum pH was likely between 8 and 9 and showed about 70% of its activity at pH 6.6. The enzyme was very stable at pH 8 and lost about 30% of its activity after holding for 24 h at 4 degrees C in buffer of pH 6.6. The optimum temperature was observed at 37 degrees C and exhibited high activity at 5 degrees C. The thermal inactivation of S. marcescens lipase was more obvious at 80 degrees C; it retained about 15% of its original activity at 80 degrees C and was completely inactivated after heating at 90 degrees C for 5 min. Under optimum conditions, activity of the enzyme was maximum after 6 min. The Michaelis-Menten constant was 1.35 mM on tributyrin. The enzyme was inhibited by a concentration more than 6.25mM. Purified lipase was not as heat-stable as other lipases from psychrotrophs, but it retained high activity at 5 degrees C. At pH 6.6, the pH of milk, purified lipase showed some activity and stability. Also, the organism demonstrated lipolytic activity at 6 degrees C after 12 h. Therefore, S. marcescens and its lipase were considered to cause flavor impairment during cold storage of milk and dairy products.  相似文献   

8.
The effect of nisin on growth boundaries of Listeria monocytogenes Scott A in Tryptone Soy Broth (TSB) under different a(w)s, pH, and temperatures was studied. Growth/no growth turbidity data was modeled using logistic regression. Combinations of various temperatures (5-35 degrees C), pH (4.05-6.70) adjusted with HCl, a(w)s (0.937-0.998) NaCl (0.5-10.5%) and nisin (0-100 IU/ml) were used to monitor the growth/no growth response of L. monocytogenes Scott A for 60 days. The concordance of the logistic regression model was 99.4%, indicating successful data fitting. The minimum pH at which growth was observed was 4.81 at the temperature range of 25-35 degrees C and at a(w) as high as 0.992. Growth was observed at a(w) as low as 0.937, at pH 6.7, at the temperature range of 25-35 degrees C. Increasing nisin concentrations above 25 IU/ml resulted in a more inhibitory environment for L. monocytogenes. Presence of 100 IU/ml resulted in a minimum pH for growth at 5.20, and a minimum a(w) at 0.967 at the temperature range of 25-35 degrees C. It was remarkable that low to medium salt concentrations (2.5-4.5 NaCl% w/v) provided a protective effect against inhibition of L. monocytogenes by nisin. The present study points out the applicability of growth/no growth modeling in order to study any interactions between various factors affecting initiation of growth of micro-organisms, in which its turn helps the understudying of microbe-food ecosystem relations and the development of safer food.  相似文献   

9.
Aeration increased the growth and lipase production in milk by Pseudomonas fluorescens strain AFT 36, isolated from refrigerated bulk milk. A heat-stable lipase was isolated from a shaken milk culture of this microorganism by DEAE-chromatography and gel filtration in Sepharose 6B. The lipase-rich fraction from DEAE cellulose contained 3 lipases that were separated by gel filtration; only the principal lipase, which represented approximately 71% of total lipolytic activity, was characterized. The purified enzyme showed maximum activity on tributyrin at pH 8.0 and 35 degrees C; it had a Km on tributyrin of 3.65 mM and was inhibited by concentrations of substrate greater than approximately 17 mM. The enzyme was very stable over the pH range 6-9; it was relatively heat-labile in phosphate buffer in the temperature range 60-80 degrees C, where it was stabilized significantly by Ca2+. It was, however, very stable at 100-150 degrees C: the D values at 150 degrees C were approximately 22 s and 28 s in phosphate buffer and synthetic milk serum respectively; the corresponding Z values in the temperature range 100-150 degrees C were approximately 40 and approximately 42 degrees C and the Ea for inactivation were 7.65 X 10(4) J mol-1 and 6.97 X 10(4) J mol-1 respectively.  相似文献   

10.
The ammonia-oxidizing chemoautotrophic Nitrosomonas sp. strain K1 exhibited marked ribulose-1,5-bisphosphate carboxylase (RubisCO) activity. The RubisCO [EC 4.1.1.39] was purified as an electrophoretically homogeneous protein. The molecular mass of the enzyme was estimated to be about 460 kDa by gel filtration, and it consists of two subunits [large (L): 52.2 kDa; small (S): 13.3 kDa] as demonstrated by SDS-PAGE. This confirmed that the enzyme has an L(8)S(8) structure. The K(m) values of the enzyme for RuBP, NaHCO3, and Mg2+ were estimated to be 0.112, 0.415, and 1.063 mM, respectively. The optimum pH and temperature for its activity were approximately 7.0 and 45 degrees C. The enzyme was stable up to 45 degrees C and in a pH range from 7.0-9.0 (4 degrees C, 48 h). The enzyme activity was inhibited by Cu2+, Hg2+, N-ethylmaleimide, p-chloromercuribenzoate, and SDS (0.1 mM). The activity was also inhibited by ammonium sulfate at high concentrations (38-303 mM) but the stability of the enzyme showed no inhibition at the same ammonium sulfate concentrations. The N-terminal amino acid sequences of the large and small subunits are AIKTYQAGVKEYRQTYW QPDYVPL and AIQAYHLTKKYETFSYLPQM, respectively.  相似文献   

11.
As an initial investigation to improve the insoluble yeast β-1, 3-glucan solubility, a novel β-glucanase from Trichoderma viride TP09 was purified in the culture supernatant and partially characterized. By 70% saturation ammonium sulfate and chromatography on DEAE-Sepharose CL-6B column, β-glucanase was purified 28.7-fold, with recovery of 45.2% of the initial activity. The molecular weight of this enzyme was estimated to be 54.6 KD by SDS-PAGE. The optimum pH and the optimum temperature for the enzyme were 5.0 and 50 °C, respectively. The enzyme showed high stability within the range of pH 3.0–5.0 and thermostability between 30 and 70 °C. The enzyme activity was inhibited by Fe3+, Mg2+, Mn2+, Cu2+, and stimulated by Zn2+, Ca2+, Fe2+. Substrate specificity studies revealed the enzyme to be a β-1, 3–1, 4-glucanase. The β-glucanase showed preference for β-1, 3 linkage and β-1, 4 linkage, but had no activity on α-1, 4 and α-1, 6 linkage. The above results indicated that the enzyme extracted from T. viride TP09 of the beer-making sewage could be used as a potential predominant tool to enhance solubility of the insoluble yeast β-1, 3-glucan. These findings may lead to an enhanced solubility and expedite the progress of application in immunotherapy.  相似文献   

12.
A hydrolase activity that cleaves lysyl-p-nitroanilide (Lys-pNA) has been purified from the cytoplasm of Lactococcus lactis subsp. cremoris AM2 by chromatography on DE52, DEAE Affi-Gel Blue Gel, Hydroxyapatite Bio-Gel HTP and Phenyl Sepharose. The purified aminopeptidase was found to have a native M(r) of 50,000-55,000 by gel filtration chromatography and by FPLC gel filtration on Superose 12 and to be composed of a single polypeptide chain following SDS-PAGE. Enzyme activity was almost completely inhibited by EDTA, amastatin, puromycin and bestatin, while the sulphydryl-reactive agents p-chloromercuribenzoate and iodoacetamide were inhibitory. The enzyme was found to be very unstable during the purification procedures at 4 degrees C and its stability was greatly improved when 10 ml glycerol/l and 2 mM-dithiothreitol were included in the purification buffers. The purified enzyme was found to hydrolyse a wide range of dipeptides, tripeptides and longer peptides provided that proline was not present in the penultimate position from the N-terminus or that a pyroglutamyl residue was not present at the N-terminus. While neither Asp-pNA nor Pro-pNA was hydrolysed by the purified enzyme, the release of N-terminal acidic residues from peptides was observed in addition to the release of N-terminal proline from Pro-Leu-Gly-NH2, Pro-Leu-Gly-Gly and Pro-His-Pro-Phe-His-Leu-Phe-Val-Tyr. This ability of Lys-pNA hydrolase to release N-terminal proline residues was employed in concert with a purified aminopeptidase P preparation to release alternate N-terminal amino acids from Tyr-Pro-Phe-Pro-Gly. The complementary action of these enzymes represents an alternative mechanism to that of post-proline dipeptidyl aminopeptidase for metabolism of proline-containing peptides.  相似文献   

13.
The β-mannanase gene, man5C1, was cloned from Penicillium pinophilum C1, a strain isolated from the acidic wastewater of a tin mine in Yunnan, China, and expressed in Pichia pastoris. The sequence analysis displayed the gene consists of a 1221-bp open reading frame encoding a protein of 406 amino acids (Man5C1). The deduced amino acid sequence of Man5C1 showed the highest homology of 57.8% (identity) with a characterized β-mannanase from Aspergillus aculeatus belonging to glycoside hydrolase family 5. The purified rMan5C1 had a high specific activity of 1035 U mg–1 towards locust bean gum (LBG) and showed highest activity at pH 4.0 and 70°C. rMan5C1 was adaptable to a wide range of acidity, retaining > 60% of its maximum activity at pH 3.0–7.0. The enzyme was stable over a broad pH range (3.0 to 10.0) and exhibited good thermostability at 50°C. The Km and Vmax values were 5.6 and 4.8 mg mL–1, and 2785 and 1608 μmol min–1 mg–1, respectively, when LBG and konjac flour were used as substrates. The enzyme had strong resistance to most metal ions and proteases (pepsin and trypsin), and released 8.96 mg g–1 reducing sugars from LBG in the simulated gastric fluid. All these favorable properties make rMan5C1 a promising candidate for use in animal feed.  相似文献   

14.
Triosephosphate isomerases [TIMs, EC 5.3.1.1] were purified from two ammonia-oxidizing bacteria: Nitrosomonas sp. K1 (K1), Nitrosomonas sp. TNO632 (TNO). The molecular masses of the native enzymes were estimated to be about 53.6 (K1-TIM) and 51.9 kDa (TNO-TIM) by gel filtration, whereas SDS-PAGE produced one band for each enzyme with M(r) values of 27.1 (K1-TIM) and 26.4 kDa (TNO-TIM), respectively, suggesting that the enzymes consist of identical subunits. The apparent K(m) for d-glyceraldehyde-3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) were about 1.19 and 4.78 mM (K1-TIM), and 0.41 and 6.01 mM (TNO-TIM), respectively. The two TIMs had different pH-activity curves with an optimum pH range of 6.5 (K1-TIM) and 8.0 (TNO-TIM). The temperature optima of K1-TIM and TNO-TIM were 50-60 and 60-65 degrees C, respectively. Both enzymes were strongly inhibited by 5,5'-ditiobis at 1.0 mM. The N-terminal amino acid sequences of K1-TIM and TNO-TIM were MRAGFVAGNWKMHG (K1-TIM) and MVRTGLVAGNWKMNG (TNO-TIM). A homology of 74.1% was observed between K1-TIM and TNO-TIM.  相似文献   

15.
Chang JM  Fang TJ 《Food microbiology》2007,24(7-8):745-751
The microbiological safety of fresh produce is a significant concern of consumers and industry. After applying at an inoculated level (about 10(6) CFUg(-1)) of E. coli O157:H7 and Salmonella enterica serovars Typhimurium on shredded iceberg lettuce and water samples individually, they were stored at 4 degrees C for 14 days and 22 degrees C for 7 days to monitor the growth and survival of pathogens. The results showed that at the end of 4 degrees C storage, populations of two pathogens in lettuce and water decreased approximately 1 log CFUg(-1). However, microbial levels on shredded lettuce increased 3 logs within 3 days at 22 degrees C. Vinegar (acetic acid) had been used to reduce populations of foodborne pathogens in foods; hence, the antimicrobial effect of rice vinegar on the survival of E. coli O157:H7 in inoculated lettuce (10(4) and 10(7) CFUg(-1)) is examined in this study. Results were observed that the treatment of inoculated lettuce (10(7) CFUg(-1)) with commercial vinegar containing 5% acetic acid (pH 3.0) for 5 min would reduce 3 logs population at 25 degrees C. Less than a 1-log decrease in bacterial numbers was recovered during 5 min exposure to 0.5% (pH 3.26) acetic acid.  相似文献   

16.
Sphingomonas sp. JB13, isolated from slag of a >20-year-old phosphate rock-stacking site, showed the highest 16S rDNA (1343bp) identity of 97.2% with Sphingomonas sp. ERB1-3 (FJ948169) and <97% identities with other identified Sphingomonas strains. A mannanase-coding gene (1191bp) was cloned and encodes a 396-residue polypeptide (ManAJB13) showing the highest amino acid sequence identities of 56.2% with the putative glycosyl hydrolase (GH) family 26 endo-1,4-β-mannanase from Rhodothermus marinus (YP_004824245), and 44.2% with the identified GH 26 endo-1,4-β-mannanase from Cellvibrio japonicus (2VX5_A). The recombinant ManAJB13 (rManAJB13) was expressed in Escherichia coli BL21 (DE3). Purified rManAJB13 displayed the typical characteristics of low-temperature-active enzymes: showing apparent optimal at 40°C, ~55% of the maximum activity at 20°C and ~20% at 10°C, and thermolability at 45°C (~15min half-life). The potential mechanism for low-temperature-activity of GH 26 endo-1,4-β-mannanases might be ascribed to the more hydrophobic residues (AILFWV) and less polar residues (NCQSTY) compared with typical thermophilic and mesophilic counterparts. The purified rManAJB13 exhibited >85% mannanase activity at the concentration of 0-4.0M NaCl. No loss of enzyme activity was observed after incubating the enzyme with 1M or 2M NaCl, or trypsin or proteinase K at 37°C and pH 6.5 for 1h. The K(m), V(max) and k(cat) values were 5.0mgml(-1), 277.8μmol min(-1)mg(-1), and 211.9s(-1), respectively, using locust bean gum as the substrate.  相似文献   

17.
A fungicide, carbendazim (methyl-2-benzimidazole carbamate; MBC), and a herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), could be simultaneously degraded by a microbial consortium obtained from several soil samples in Japanese paddy fields with enrichment continuous culture. The degradation ability of the consortium was increased by immobilization on loofa (Luffa cylindrica) sponge in comparison with that of free-living consortium. MBC and 2,4-D were completely degraded within 5.5 d and 1.5 d, respectively. The toxicity of these pesticides in culture medium to Daphnia magna was reduced by treatment with the consortium corresponding to their degradation. The degradation ability of the immobilized consortium at pHs in the range from 6 to 9, at temperatures from 15 degrees C to 37 degrees C, and at low NH(4)(+)-N concentrations (1-10 mg/l) was not very different from that under the basal condition (pH 7, 30 degrees C, 424 mg/l NH(4)(+)-N and 472 mg/l PO(4)(3)(-)-P). At low pHs 4 and 5, the ability was significantly lower than that of the basal condition. Moreover, incubation at low PO(4)(3)(-)-P concentrations (1-10 mg/l) caused a decrease in pH at which the degradation ability also became lower. However, the ability in this culture completely recovered when pH was adjusted to 7 or the phosphate concentration was increased to the basal level. Analysis by denaturing gradient gel electrophoresis (DGGE) showed the whole population of the consortium became faint at low pH or low phosphate concentrations but became distinct again as much as those under the basal conditions, indicating that the decrease in the degradation ability caused by low pH was due to that whole population of the consortium underwent serious damage but could survive and recover. These results suggest the immobilized consortium on loofa sponge is a promising material for bioremediation of polluted water with these pesticides in paddy fields.  相似文献   

18.
The presence of Brettanomyces bruxellensis has been correlated with an increase of phenolic aromas in wine. The production of these aromas results from the metabolization of cinnamic acids, present in the wine, to their ethyl derivatives. Hence, the participation of two enzymes has been proposed: a p-coumarate decarboxylase (CD) and a vinylphenol reductase (VR). Both enzymes were purified and characterized from B. bruxellensis. In denaturing conditions, the CD enzyme had a molecular mass of 21 kDa, while in native conditions its mass was 41 kDa. The optimal activity was obtained at a temperature of 40 degrees C and a pH of 6.0. For p-coumaric acid, the K(m) value and V(max) were 1.22+/-0.08 mM and 98+/-0.15 micromol/min mg, respectively. The VR enzyme had a molecular mass of 37 kDa in SDS-PAGE, while in natural conditions its mass was 118 kDa. The K(m) value was >3.37+/-2.05 mM and its V(max) was 107.62+/-50.38 micromol/min mg for NADPH used as a cofactor. Both enzymatic activities were stable at pH 3.4, but in the presence of ethanol the CD activity decreased drastically while the VR activity was more stable. This is the first report that shows the presence of a CD and a VR enzyme in B. bruxellensis.  相似文献   

19.
An organic solvent-stable lipase (LST-03 lipase) secreted into the culture broth of the organic solvent-tolerant Pseudomonas aeruginosa LST-03 was purified by ion-exchange and hydrophobic interaction chromatography in the presence of 2-propanol. The purified enzyme was homogeneous as determined by SDS-PAGE. The molecular mass of the lipase was estimated to be 27.1 kDa by SDS-PAGE and 36 kDa by gel filtration. The optimum pH and temperature were 6.0 and 37 degrees C. LST-03 lipase was stable at pH 5-8 and below 40 degrees C. Its hydrolytic activity was highest against tricaproin (C6), methyl octanoate (C8), and coconut oil respectively among the triacylglycerols, fatty acid methyl esters, and natural oils investigated. The enzyme cleaved not only the 1,3-positioned ester bonds, but also the 2-positioned ester bond of triolein. It exhibited high levels of activity in the presence of n-decane, n-octane, DMSO, and DMF as well as in the absence of an organic solvent. In addition, LST-03 lipase was stabler in the presence of n-decane, ethyleneglycol, DMSO, n-octane, n-heptane, isooctane, and cyclohexane than in the absence of an organic solvent.  相似文献   

20.
Aspergillus oryzae RIB40 niaD(-) was transformed using a plasmid constructed with the A. oryzae phytase gene and pNAN8142 vector. The culture broth of the transformant, which was grown in a medium containing starch as a carbon source and polyvinylpyrrolidone showed phytase activity of a maximum of 2.0 units ml(-1) at 37 degrees C, pH 5.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号