首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
The driving forces for a generally oriented crack problem embedded in a Functionally Graded strip sandwiched between two half plane are analyzed using singular integral equations with Cauchy kernels, and integrated using Lobatto-Chebyshev collocation. Mixed-mode Stress Intensity Factors (SIF) and Strain Energy Release Rates (SERR) are calculated. The Stress Intensity Factors are compared for accuracy with previously published results. Parametric studies are conducted for various non-homogeneity ratios, crack lengths, crack orientation and thickness of the strip. It is shown that the SERR is more complete and should be used for crack propagation analysis.  相似文献   

2.
This paper presents methodologies for fracture analysis of concrete structural components with and without considering tension softening effect. Stress intensity factor (SIF) is computed by using analytical approach and finite element analysis. In the analytical approach, SIF accounting for tension softening effect has been obtained as the difference of SIF obtained using linear elastic fracture mechanics (LEFM) principles and SIF due to closing pressure. Superposition principle has been used by accounting for non-linearity in incremental form. SIF due to crack closing force applied on the effective crack face inside the process zone has been computed using Green's function approach. In finite element analysis, the domain integral method has been used for computation of SIF. The domain integral method is used to calculate the strain energy release rate and SIF when a crack grows. Numerical studies have been conducted on notched 3-point bending concrete specimen with and without considering the cohesive stresses. It is observed from the studies that SIF obtained from the finite element analysis with and without considering the cohesive stresses is in good agreement with the corresponding analytical value. The effect of cohesive stress on SIF decreases with increase of crack length. Further, studies have been conducted on geometrically similar structures and observed that (i) the effect of cohesive stress on SIF is significant with increase of load for a particular crack length and (iii) SIF values decreases with increase of tensile strength for a particular crack length and load.  相似文献   

3.
双相介质界面附近裂纹的断裂力学特征   总被引:3,自引:0,他引:3       下载免费PDF全文
复合材料界面附近的力学性态对于材料的性能和强韧化影响是非常重要的。首先研究和讨论了含裂纹的双相介质的J 积分守恒定律的适用性问题, 采用有限元法证明了当裂纹平行靠近界面时, 其J 积分数值与裂纹位置无关的假设。文中建立了一种双相介质界面附近存在斜裂纹的分析模型, 用有限元和数值拟合相结合的方法, 得到了在远场单轴拉应力作用下, 斜裂纹处在不同介质中, 近界面一端裂尖的é 型能量释放率近似计算公式, 和相应的应力强度因子的计算方法。  相似文献   

4.
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.  相似文献   

5.
Strain energy release rate (SERR) components for an interface crack in two-dimensional orthotropic media were obtained using finite element (FE) analysis. The elastic analysis of interface cracks results in oscillatory singularity. This is prevalent over a very small zone near the crack-tip, where the traction free crack faces undergo unacceptable deformations resulting in the interpenetration of crack faces. The individual and total strain energy release rates are calculated using modified crack closure integral (MCCI) method. Although the total SERR converges, it is observed that the individual SERR components are dependent on the values of the smallest element size (Δa) at the crack-tip. It is observed that both the crack opening and sliding displacements are oscillatory when the interpenetration is allowed in the contact zone. The contact zone length (rc) calculated using Suo's analytical expression [Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. Royal Soc. London, Ser A427 (1990) 331] is in good agreement with the results from FE analysis and MCCI calculations. However, for the chosen material properties, the estimated contact zone length based on the analytical expression proposed by Ni and Nemat-Nasser [J. Mech. Phys. Solids 39 (1991) 113] exhibits a large deviation from the present FE results. It is seen that the mode-II behavior dominates the crack growth, even under mode-I loading.  相似文献   

6.
Six-noded, isoparametric serendipity type quadrilateral regular/singular elements are used for the estimation of stress intensity factors (SIF) in linear elastic fracture mechanics (LEFM) problems involving cracks in two-dimensional structural components. The square root singularity is achieved in the six-noded elements by moving the in-side nodes to the quarter point position. The modified crack closure integral (MCCI) method is adopted which could generate accurate estimates of SIF for a relatively coarse mesh. The equations for strain energy release rate and SIF are derived for mixed mode situations using six-noded quadrilateral elements at the crack tip. The model is validated by numerical studies for a centre crack in a finite plate under uniaxial tension, a single edge notched specimen under uniaxial tension, an inclined crack in a finite rectangular plate and cracks emanating from a pin-loaded lug (or lug attachment). The results compare very well with reference solutions available in the literature.  相似文献   

7.
ABSTRACT

An analytical solution to the antiplane elasticity problem associated with two circular inclusions interacting with a line crack is provided in this article. A series solution for the stress field is derived in an elegant form by using complex variable theory in conjunction with the alternation method. Based on the superposition method, a singular integral equation (SIE) is established from the traction-free condition along the crack surface. After solving the SIE, the mode-III stress intensity factors (SIFs) can be obtained to quantify the singular behavior of the stress field ahead of the crack tips. Numerical results of the SIFs, when a crack is embedded either in the inclusion or in the matrix, are discussed in detail and displayed in graphic form.  相似文献   

8.
利用区间B样条小波良好的局部化性能,将内聚力模型(CZM)引入小波有限元法(WFEM)数值分析中,以区间B样条小波尺度函数作为插值函数,构造小波内聚力界面单元,推导了小波内聚力界面单元刚度矩阵,基于虚拟裂纹闭合技术(VCCT)计算界面裂纹应变能释放率(SERR),采用β-Κ断裂准则,实现界面裂纹扩展准静态分析。将WFEM和传统有限元法(CFEM) 的SERR数值分析结果与理论解进行比较,结果表明:采用WFEM和CFEM计算的SERR分别为96.60 J/m2 和 101.43 J/m2,2种方法的SERR数值解与理论解相对误差分别为1.85%和3.06%,这明确表明WFEM在计算界面裂纹扩展方面能用较少单元和节点数获得较高的计算精度和效率。在此基础上,探讨了界面裂纹初始长度和双材料弹性模量比对界面裂纹扩展的影响,分析结果表明:界面裂纹尖端等效应力随界面裂纹初始长度的增加而增加;双材料弹性模量比相差越大,界面裂纹越易于扩展,且裂纹扩展长度也越大,因此可通过调节双材料弹性模量比来延缓界面裂纹扩展。   相似文献   

9.
Mathematical models, for the stress analysis of unidirectional (0°) fiber-reinforced laminated composite double cantilever beam (DCB) specimen using classical beam theory, first and higher order shear deformation beam theories, have been developed to determine the mode I strain energy release rate (SERR) for unidirectional composites. In the present study, appropriate matching conditions at the crack tip of the DCB specimen have been derived by using variational principles. SERR has been calculated using compliance method. In general, the performance of shear deformation beam models of DCB specimen with variationally derived matching conditions at the crack tip is good in determining the SERR for medium to long crack lengths. Performance of higher order shear deformation beam model (having quadratically varying transverse displacement over the thickness) of DCB specimen, with non-variationally derived matching conditions at the crack tip, is good in determining the SERR for all the crack lengths in comparison with the available theoretical and finite element solutions in the literature. Higher order shear deformation beam theories having varying transverse displacement over the thickness are more appropriate to analyze DCB specimen as they predict the appropriate nature of the interlaminar normal stress at the crack tip and its distribution ahead of the crack tip.  相似文献   

10.
We review, unify and extend work pertaining to evaluating mode mixity of interfacial fracture utilizing the virtual crack closure technique (VCCT). From the VCCT, components of the strain energy release rate (SERR) are obtained using the forces and displacements near the crack tip corresponding to the opening and sliding contributions. Unfortunately, these components depend on the crack extension size, Δ, used in the VCCT. It follows that a mode mixity based upon these components also will depend on the crack extension size. However, the components of the strain energy release rate can be used for determining the complex stress intensity factors (SIFs) and the associated mode mixity. In this study, we show that several—seemingly different—suggested methods presented in the literature used to obtain mode mixity based on the stress intensity factors are indeed identical. We also present an alternative, simpler quadratic equation to this end. Moreover, a Δ-independent strain energy release based mode mixity can be defined by introducing a “normalizing length parameter.” We show that when the reference length (used for the SIF-based mode mixity) and the normalizing length (used for Δ-independent SERR-based mode mixity) are equal, the two mode mixities are only shifted by a phase angle, depending on the bimaterial parameter ε.  相似文献   

11.
This work reports about an investigation on mixed mode stress intensity factors (SIFs) of three-dimensional (3D) surface cracks in hollow cylinders made-up of functionally graded material (FGM). A finite element implementation of the interaction energy integral in domain form is employed to extract the SIFs. In turn, surface cracks located at the inner and outer wall of the cylinders are considered, and the influence of exponentially varying Poisson’s ratio and Young’s modulus in radial direction on the SIFs is studied in detail. The computational results reported herein show that graded materials properties can significantly affect the magnitude and the distribution of SIFs along 3D crack fronts in FGM hollow cylinders.  相似文献   

12.
Stress intensity factor solutions for semi-elliptic surface and quarter-elliptic corner cracks emanating from a semi-circular notch in a tension specimen are presented. A threedimensional finite-element analysis in conjunction with the equivalent domain integral was used to calculate stress intensity factors (SIF). SIF solutions for surface or corner crack (crack length to depth ratio of 2) at a notch are presented for a wide range of crack sizes and notch radii. Results showed that the SIF are larger for larger crack lengths and for larger notch radii. The SIF are nearly constant all along the crack front for deep surface cracks and for all corner cracks analysed.  相似文献   

13.
In this paper, the transient dynamic stress intensity factor (SIF) is determined for an interface crack between two dissimilar half-infinite isotropic viscoelastic bodies under impact loading. An anti-plane step loading is assumed to act suddenly on the surface of interface crack of finite length. The stress field incurred near the crack tip is analyzed. The integral transformation method and singular integral equation approach are used to get the solution. By virtue of the integral transformation method, the viscoelastic mixed boundary problem is reduced to a set of dual integral equations of crack open displacement function in the transformation domain. The dual integral equations can be further transformed into the first kind of Cauchy-type singular integral equation (SIE) by introduction of crack dislocation density function. A piecewise continuous function approach is adopted to get the numerical solution of SIE. Finally, numerical inverse integral transformation is performed and the dynamic SIF in transformation domain is recovered to that in time domain. The dynamic SIF during a small time-interval is evaluated, and the effects of the viscoelastic material parameters on dynamic SIF are analyzed.  相似文献   

14.
In this paper detailed results of 3D finite element (FE) and mixed mode analyses of different fracture specimens are presented and discussed. Special interest is taken in 3D and mode coupling effects to be found in strain energy release rate (SERR) results along crack fronts, in particular adjacent to corners, where a crack front intersects a free surface of a specimen. It will be shown that these effects stay small if they are related to Poisson’s ratio but that they can also be considerably pronounced if they are related to the global deformation behaviour of the specimen. The computational fracture analysis is based on the calculation of separated energy release rates (SERRs) by the aid of the modified virtual crack closure integral (MVCCI)-method in order to calculate the local SERR-distributions along the crack front. Furthermore some qualitative experimental results will show the influence of these variable mixed mode I, II and III loading conditions along the crack front on crack initiation and on the further development of 3D crack growth in the specimens.  相似文献   

15.
There is considerable ambiguity regarding the limiting values of the strain energy release rate (SERR) components at the tips of a crack lying along the interface between two dissimilar isotropic media. In this paper this aspect is examined using finite element analysis and Modified Crack Closure Integral (MCCI) for a problem in which the material properties are chosen so as to cause a large size crack-tip contact zone. By careful choice of this problem, interpenetration of the crack faces in the crack-tip contact zones is observed for the first time in the finite element analysis. Earlier solutions primarily on remote mode 1 loading reported that SERR components do not converge as the virtual crack extension Δa → 0 and that these components show an oscillatory nature when Δa is less than the contact zone size rc. In the present work, multipoint constraints are imposed on crack face normal displacements in the contact zone and meaningful results are generated for both remote tension and shear loading cases. The apparent nonconvergence of the SERR components as Δa → 0 can be explained if these components are considered as functions of Δa, and Δa is considered as the actual crack growth step size.  相似文献   

16.
For a through-the-thickness crack in an infinite plate subjected to out-of-plane uniform bending moment, the strain energy release rate is determined using the virtual crack extension and the variation of potential energy. It is shown that the strain energy release rate for the Reissner's plate approaches the classical plate solution as the ratio of plate thickness to crack size becomes infinitesimally small. By using this result, the limiting expression of the stress intensity factor can be explicitly obtained. For general problems, the modified crack closure method is shown to be an efficient tool for evaluating the strain energy release rates from which the stress intensity factor can be calculated. Both the classical plate element and the Mindlin plate element are investigated, and the applicability of the classical plate element is evaluated.Because the stress-free conditions along the crack face lead to inter-penetration of the plate, a line contact model is assumed to investigate the closure effect using Reissner plate theory. Closure at the compressive side is shown to reduce crack opening displacement and consequently the stress intensity factors. When closure is considered, the strain energy rate based on the Reissner plate theory converges to the classical plate solution. This is similar to the nonclosure case.  相似文献   

17.
Stress intensity factors (SIFs) presented in the literature for corner cracks are limited to ideal quarter-circular and quarter-elliptical crack shapes. This paper presents SIF solutions for corner cracks that exhibit tunnelling, extending the range of corner crack shapes illustrated in the literature. Solutions were developed in a parametric form, obtained by empirically fitting polynomials to numerical values of SIF obtained from the FEM. A parameter was defined to quantify the extent of tunnelling. It was observed that crack shape has a significant effect on the SIF, so the consideration of equivalent quarter-circular cracks can produce inaccurate results when significant tunnelling occurs. SIF solutions for quarter-circular cracks are also presented and compared with those quoted in the literature.  相似文献   

18.
基于虚拟裂纹闭合技术的应变能释放率分析   总被引:3,自引:1,他引:2  
基于虚拟裂纹闭合技术(VCCT),建立了复合材料层合板层间裂纹尖端的应变能释放率(SERR)三维有限元计算模型。该模型考虑了裂纹尖端大转动和离散单元形状变化对应变能释放率计算的影响,修正了裂纹尖端应变能释放率的计算方法。利用该模型计算了裂纹长度为15 mm和35 mm时纯Ⅰ型和纯Ⅱ型的应变能释放率,纯Ⅰ型应变能释放率分别为 207 J/m2和 253 J/m2;纯Ⅱ型应变能释放率分别为 758 J / m 2和 1040 J / m2;计算值与试验值吻合得很好。同时,该模型计算了混合型不同比值 R=(G/G+G)的长裂纹层合板层间断裂过程的应变能释放率,其中Ⅰ型和Ⅱ型应变能释放率计算值与试验平均值的最大误差为 11.4%,最小误差为 0.4%。该模型能有效计算裂纹尖端的应变能释放率。  相似文献   

19.
The methodology and a rigorous solution formulation are presented for stress intesity factors (SIF's, k) and total strain energy release rates (SERR, G T ) of a multicracked plate, that has fully interacting cracks and is subjected to a far-field arbitrary stress state. The fundamental perturbation problem is derived, and the steps needed to formulate the system of singular integral equations whose solution gives rise to the evaluation of the SIF's are identified. Parametric studies are conducted for two, three and four crack problems. The sensitivity and characteristics of the model is demonstrated.The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

20.
Stress fields near the tip of a through crack in an elastic plate under bending and twisting moments are reviewed assuming both Kirchhoff and Reissner plate theories. The crack tip displacement and rotation fields based on the Reissner theory are calculated here for the first time. These results are used to calculate the J-integral (energy release rate) for both Kirchhoff and Reissner plate theories. Invoking Simmonds and Duva's [16] result that the value of the J-integral based on either theory is the same for thin plates, a universal relationship between the Kirchhoff theory stress intensity factors and the Reissner theory stress intensity factors is obtained for thin plates. Calculation of Kirchhoff theory stress intensity factors from finite elements based on energy release rate is illustrated. A small scale yielding like model of the crack tip fields is discussed, where the Kirchhoff theory fields are considered to be the far field conditions for the Reissner theory fields. It is proposed that, for thin plates, fracture toughness and crack growth rates be correlated with the Kirchhoff theory stress intensity factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号