首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
杨蓉  邓坤发  刘晓艳  曲冶  雷京  任冰 《化工进展》2015,34(5):1340-1344
锂硫电池由于其高理论能量密度(2600W·h/kg)而受到了广泛的关注,是极具应用前景的电池体系.硫基正极材料作为锂硫电池的重要组成部分,是提高电池性能的关键.然而锂硫电池还存在一些问题,如硫的利用率低及正极结构的稳定性差等.本文综述了近几年锂硫电池硫正极复合材料的研究现状,分别从硫/碳复合、硫/导电聚合物复合、硫/氧化物复合3个方面进行介绍,指出了未来锂硫电池正极材料要注意结合硫/导电聚合物及硫/氧化物的优势并注重材料结构的设计,向核壳或类核壳结构方向发展的趋势,同时还要提高载硫量,提高循环稳定性,以获得高性能的锂硫电池.  相似文献   

2.
正锂硫电池被视为下一代高能量密度电池体系的理想选择之一,受到全世界科研界和产业界的高度关注,是未来各国布局的重点研究方向之一。但随着研究的不断深入,锂硫电池也面临日益严峻的挑战。目前存在的主要问题是锂硫电池的体积能量密度较低,导致其在很多重要的市场应用中失去竞争力,同时高电解液用量也成为其重量能量密度提高的瓶颈。主要原因在于硫是离子和电子绝缘体,因此正极中的硫需要大量  相似文献   

3.
锂-硫电池得益于其高的理论比容量和能量密度,受到了很多科研人员的关注,它集绿色无污染、价格实惠、来源广阔等多种优点于一身,激发了专家学者的探索兴趣。其中锂-硫电池的正极材料是影响电池性能好坏的一个重要因素,现今碳材料的高导电性成为硫宿主材料的研究热点之一。本文主要介绍了几种碳基复合材料用于锂-硫电池的正极设计以及性能研究。  相似文献   

4.
锂硫电池由于其理论能量密度高,理论比容量高,环境友好等特性,成为最有潜力应用于电动汽车与电子设备的能量储存介质之一。然而由于锂硫电池的硫正极绝缘性,多硫化物的溶解导致的穿梭效应和锂负极枝晶等问题,阻碍了锂硫电池的商业化应用。介绍了锂硫电池正极材料的结构改进与锂负极材料的保护,包括使用不同类型的碳材料与导电金属氧化物用于正极的导电框架,以及使用电解液添加剂,人工保护层等方式对锂负极进行保护。最后,对锂硫电池的未来发展进行了展望。  相似文献   

5.
<正>近日,中国科学院大连化学物理研究所陈剑研究员领导的先进二次电池研究组在锂硫电池工程技术研发中取得了阶段性进展:研究开发了高性能纳米结构碳硫复合材料、高硫担载量硫正极极片和大容量锂硫电池技术。经过先导项目组评测,所研制的额定容量30 Ah的单体电池的质量比能量达到520 Wh/kg,这也是迄今所见报道的额定容量和能量密度最高的锂硫电池。同时,该研究组在锂硫电池成组技术方面也取得新进展,研制的1 k Wh锂硫电池组经第三方测试比能量达到330 Wh/kg。若仅以活  相似文献   

6.
文摘     
<正>碳质材料在锂硫电池中的应用研究进展[刊,中]/张强,程新兵,黄佳琦,等//新型炭材料,2014,29(4):241-264随着石墨负极的成功商用,锂离子电池在智能手机、笔记本电脑等便携式电子设备中已得到广泛应用。锂硫电池系统具有极高的理论能量密度,在多种储能系统中是最具潜力的一种二次电池。纳米碳质材料在新型锂硫电池的开发过程中处于重要地位,通过纳米炭的引入,可以获得导电复合正极材料,控制多硫化物的穿梭,从而有望实现正极硫材料的  相似文献   

7.
锂硫电池理论能量密度高(2 600 W·h/kg)、硫原料丰富、成本低,是最有发展前景的锂二次电池技术之一。然而硫以及放电产物硫化锂电导率低,电化学反应过程中生成的可溶性多硫化物的"穿梭效应"以及电池充放电过程中电极的体积效应等,影响了锂硫电池性能的发挥,阻碍了锂硫电池实用化进程。近年来,通过电极材料的设计、电极表界面的修饰以及电解液体系优化,锂硫电池的性能得到显著提升。综述了近年来锂硫电池中硫正极、隔膜和金属Li表界面修饰方面的研究进展。  相似文献   

8.
锂硫电池具有很高的能量密度[2 600(W·h)/kg],其正极材料硫具有储藏丰富、对环境友好等优点,因此锂硫电池成为下一代二次电池的研发重点。然而,硫的高绝缘性、反应过程中体积的变化以及中间产物多硫离子溶解等难题,使其目前很难实现商品化。石墨烯具有超高的导电性和优异的力学性能,其与硫制成的复合材料作为电池正极材料可以有效地解决上述问题。从石墨烯–硫复合材料、石墨烯–碳–硫复合材料、石墨烯–聚合物–硫复合材料、石墨烯–氧化物–硫复合材料等方面出发,总结了石墨烯在锂硫电池中作为正极材料的最新进展,并且提出了未来石墨烯在锂硫电池中应用的研究主要在探索石墨烯简捷的制备方法、研究石墨烯新的应用方式、开发多种材料复合等方面。  相似文献   

9.
随着电动汽车和便携式电子设备的发展,锂硫电池因其高的理论比容量(1 675 m A·h/g)和高的理论能量密度(2 600 W·h/kg)而引起人们的广泛关注,在未来非常有可能成为常用的电源设备。然而,锂硫电池存在较低的离子和电子导电性、较差的循环性以及生成的多硫化物易溶于有机溶剂等缺点,严重制约了锂硫电池的应用。要解决上述问题,提高单质硫的导电性、抑制电极反应中的穿梭效应势在必行,因此如何改良正极材料仍然是研究的关键点。主要总结了近年来各种碳材料在锂硫电池正极材料中的应用研究现状及进展,简要阐述了这些碳材料应用于锂硫电池正极材料中存在的问题及面临的挑战,并对其未来的发展趋势进行了预测。  相似文献   

10.
锂硫(Li-S)电池因其超高的理论能量密度(2600 Wh·kg-1)有望成为下一代高能量密度电池的候选者之一。然而,它存在硫利用率低、容量衰减快以及多硫化锂(LiPSs)发生“流失效应”等问题,这使得Li-S电池反应动力学缓慢,严重限制了其实际应用。物理限制、化学吸附等方法可以加速硫、LiPSs和Li2S之间的氧化还原反应,减少LiPSs的流失,加速动力学过程,使电池具有高能量密度和长循环稳定性。基于整体电化学反应过程,对近些年使用的材料如何促进动力学进程、阻止LiPSs的流失,以及相应策略的评价进行了综述,以指导提升电池动力学性能的合理设计和Li-S电池的实际应用。  相似文献   

11.
锂硫电池由于其较高的理论能量密度近年来受到广泛关注。将海藻酸钠、聚乙烯醇、高比表面超导碳、碳纳米管制备成分散液,通过真空抽滤的方法制备了碳纳米管碳膜。将制备的碳膜置于锂硫电池正极与隔膜之间,以改善锂硫电池的性能。利用SEM,电化学性能测试等方法,表征了碳膜的微观形貌并测试了锂硫电池的电化学性能。引入碳膜的锂硫电池首次放电容量达到1537.6 m Ah/g,80次循环后容量保持在1189 m Ah/g。碳纳米管碳膜能够提供电子的传输通道,吸附聚硫离子,抑制固相产物在正极表面的富集,使锂硫电池的性能有较大幅度的提高。  相似文献   

12.
锂硫电池因具有优异的理论容量、能量密度和可持续发展特性而受到越来越广泛的关注。决定锂硫电池性能的最主要因素之一是其正极材料。本文分别通过自组装法和模板法,制备了两种V2O5纳米球,并在制备过程中添加了碳纳米管。以所得到的材料作为正极改性材料,组装了扣式锂硫电池。通过对所制备材料的结构以及电化学性能研究,并与商用V2O5进行对比,发现V2O5纳米球具有良好电化学性能,其电池性能显著优于商用V2O5。这可归因于所合成的V2O5纳米球一方面具有较高的比表面积,有利于活性物种硫的负载,另一方面表面连接有碳纳米管,有利于提高电子传输性能。基于自组装法(1号样品)和模板法(2号样品)所得V2O5纳米球的锂硫电池,在0.1C的倍率下首次充放电比容量分别可达到1049mAh/g和1035mAh/g;经过200次循环后,其放电比容量分别为702...  相似文献   

13.
锂硫电池因其能量密度高、成本较低、绿色环保等特点近年来受到广泛关注,但是当采用醚类电解液时,反应的中间产物会发生溶解穿梭导致活性物质流失和库仑效率低等严重问题,在正极和隔膜之间嵌入功能性中间层是解决这些问题的有效手段。对近年来锂硫电池中间层的研究进展进行了介绍,从抑制多硫化物扩散、降低正极界面电阻以及提升反应动力学三个方面对中间层进行分类总结,并展望了锂硫电池功能性中间层未来的设计方向和发展前景。  相似文献   

14.
LiFePO4(LFP)作为正极材料时,锂离子电池安全性高且循环寿命长,是目前应用最广泛的正极材料,但其电池倍率性能较差。提升倍率性能的有效手段之一是将LFP材料颗粒纳米化,但材料纳米化过程中颗粒粒径减小对于锂离子电池充放电过程中锂在固液相的扩散及表面电化学反应的影响机制仍缺乏清晰的认识。采用锂离子电池的准二维模型,模拟锂离子电池的放电过程,定量研究了正极材料颗粒粒径对锂离子电池倍率性能的影响,分析了固液相扩散速率与电化学反应速率受LFP材料颗粒粒径的影响程度。研究结果表明:电极材料中固相扩散阻力是锂离子电池电化学性能的主要限制因素。小粒径的LFP作为正极材料时,电极材料内的金属锂的迁移路径较短,同时颗粒与电解液的接触面积增加,界面的电化学反应速率较快,放电倍率对于锂离子电池性能影响较小;大粒径的LFP作为正极材料时,电极材料内的金属锂扩散路径的增加和较高的固相扩散阻力限制了界面的电化学反应速率,导致锂离子电池的倍率性能显著降低。LFP材料的纳米化可以有效减小固相扩散阻力,提升锂离子电池的倍率性能。  相似文献   

15.
锂硫电池具有较高的理论比容量(1 675 mAh/g)和能量密度(2 600 Wh/kg)优势,并且用于该电池的活性物质单质硫廉价、环境友好,被认为是目前最具发展潜力的新一代高能量密度的电化学储能体系之一。隔膜作为锂硫电池的关键材料之一,其性能优劣将会直接影响锂硫电池的性能。本文主要综述了锂硫电池隔膜的种类、改性方法等方面的研究进展,建议开发新的高品质锂硫电池隔膜材料,最终使其电化学性能得以提高。  相似文献   

16.
锂空气电池具有高能量密度和良好的发展前景,但其循环性能仍不能满足使用要求,而空气电极侧(即正极)的电化学反应对电池的循环可逆性具有显著影响,正极催化剂的引入可以显著改善电池的循环性能。以高比表面积的石墨相氮化碳介孔材料作为模板和碳源,以六氯化钨为钨源,通过高温反应制备具有较高比表面积的碳化钨材料,并以该碳化钨作为锂空气电池的正极催化剂。利用透射电子显微镜(TEM)、X射线衍射(XRD)、物理吸附等对合成的样品进行表征,结果表明制备的样品为碳化钨材料,并且具有较高的比表面积。采用电化学测试方法研究了碳化钨材料在锂空气电池中的电催化效果,结果表明该碳化钨材料在锂空气电池中具有良好的电催化性能,电池可以保持较长时间的稳定循环状态。  相似文献   

17.
锂硫电池因其理论能量密度高、原材料丰富、成本低廉等优点而受到广泛关注。然而硫正极电导率低、体积膨胀、以及脱嵌锂过程中多硫化物产生的穿梭效应等问题限制了锂硫电池的商业化应用。其采用导电材料作为硫载体,一方面可缓解体积膨胀,另一方面可改善正极导电性,同时一定程度上限制多硫穿梭。多级孔碳由于具有导电性优良、结构稳定、孔径及形貌可控等优点,被认为是一种理想的硫载体。从锂硫电池的发展背景出发阐述了多级孔碳作为硫载体的研究意义,首先介绍了多级孔碳材料的制备方法如硬模板法、软模板法和活化法等,进一步介绍了碳材料中的微孔、介孔及大孔在锂硫电池中提升导电性、稳定结构和抑制多硫穿梭效应的作用机理,最后对多级孔碳作为硫载体推进锂硫电池的发展前景进行了展望。  相似文献   

18.
对比纯镁电解液的镁电池,锂镁双盐混合电池具有循环寿命长、充放电速度快、Coulomb效率高、正极选择多等特点,特别当采用容量更高的转换反应型正极时,可显著提高镁电池的能量密度。从硫基和有机正极材料方面综述了转换反应型或多电子转移型双盐电池的研究进展,通过纳米结构调控、导电网络构筑、支撑离子诱导等手段,实现了镁硫电池和镁玫瑰酸盐电池的能量密度提升和长期循环稳定,它们的正极能量密度可达500 W·h/kg。提出了添加剂盐激活转换型镁金属电池的策略,为未来镁基电池的发展提供了新的思路。  相似文献   

19.
用于锂硫电池的碳质材料具有优异的力学、电学、导热性能,可调的孔结构以及丰富的表面特性,能有效地限制多硫化物的溶解,改善锂硫电池的电化学性能。因此,本文分别从一维碳、二维碳和三维碳这3个方面综述了锂硫电池硫基碳复合正极材料的研究进展,探讨了改性硫基碳正极材料的制备方法和结构设计。分析表明,高比表面积和高孔容积的多孔纳米碳材料对提高锂硫电池电化学性能而言至关重要,并提出用金属硫化物掺杂的有序介孔碳复合材料作为锂硫电池的正极材料能促进锂离子在正负极间的迁移,提高锂硫电池的循环稳定性和活性物质利用率。  相似文献   

20.
锂硫电池是极具实用前景的新型高能量密度电池体系之一,但在充放电过程中会产生可溶于液态电解液的多硫化锂,引发穿梭效应和硫的快速损失,导致电池的容量和循环性能难以满足实用化的要求。钛基化合物的结构多样且易于调控,对多硫化锂也有较强的吸附能力和催化转化活性,是抑制穿梭效应的常用材料之一。主要介绍了钛基化合物对多硫化锂的物理限域、化学吸附和催化转化能力等性质,系统讨论了不同种类的钛基化合物在锂硫电池正极中的作用,在此基础上对钛基化合物在锂硫电池中的应用前景进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号