首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高压静电纺丝法制备聚酰亚胺超细纤维无纺布膜   总被引:1,自引:0,他引:1  
胡建聪 《弹性体》2009,19(1):35-37
采用制备聚合物纳米纤维的一种简易的重要基本方法,即静电纺丝技术,以实验室合成的聚酰胺酸(PAA)溶液为纺丝溶液,采用自制静电纺丝机进行电纺得到PAA纤维无纺布膜。采用傅立叶变换红外光谱分析技术对无纺布膜的化学结构进行了表征分析;由PAA及聚酰亚胺(PI)无纺布膜的谱图吸收峰对比分析得知,纤维热酰亚胺化的程度是比较完全的;但由相应吸收峰对比分析得知,热酰亚胺化的程度并没有达到100%。  相似文献   

2.
利用聚酰胺酸(PAA)溶液和纳米碳化硅(SiC)混合物作为纺丝液,通过静电纺丝法制备聚酰胺酸/碳化硅(PAA/SiC)复合纳米纤维,PAA/SiC复合纳米纤维亚胺化后得到聚酰亚胺/碳化硅(PI/SiC)复合纳米纤维。研究了PAA溶液中PAA含量、纺丝电压、纺丝距离及SiC含量对PAA/SiC复合纳米纤维形貌的影响,利用热重法分析了PI/SiC复合纳米纤维的热稳定性。结果表明,使用固含量为15%的PAA溶液作为基体材料,再将纳米SiC以6%的含量均匀分散于基体材料中制备出纺丝液,在纺丝电压为10~18kV左右、纺丝距离为15cm时,可制备出直径250nm左右、光滑、连续、SiC分布均匀的PAA/SiC复合纳米纤维。PI/SiC复合纳米纤维热稳定性优异,氮气气氛中热分解温度为550℃。  相似文献   

3.
采用静电纺丝技术制备聚酰亚胺(PI)纤维膜,并通过考察纺丝条件对PI纤维形貌的影响确定制备PI纤维膜的合适条件。在此基础上,将3-氨丙基三乙氧基硅烷表面改性纯硅沸石纳米晶(A-PSZN)引入聚酰胺酸(PAA),通过静电纺丝及热酰亚胺化处理制备PI/A-PSZN复合纤维膜,并对纤维膜的介电常数和力学性能进行详细研究。研究结果表明制备形貌规整的PI纤维的合适条件为:PAA溶液固含量为15%(wt),外加电压为15 k V,接收距离为15 cm;在1 MHz测试频率下PI纤维膜的介电常数为1.61,尽管添加A-PSZN并未对纤维膜的介电常数带来明显影响,但是有利于提高纤维膜的力学性能,PI/7%(wt)A-PSZN杂化纤维膜的杨氏模量和拉伸强度分别由基体的0.15 GPa和29.4 MPa提高至0.584 GPa和41.3 MPa。  相似文献   

4.
不同亚胺化温度对聚酰亚胺无纺布膜性能的影响   总被引:1,自引:0,他引:1  
本文以聚酰亚胺酸(PAA)为纺丝液,采用高压静电纺丝技术制备了醚酐型(ODPA—ODA型)PAA无纺布,通过不同的亚胺化温度获得ODPA—ODA型聚酰亚胺(PJ)无纺布。利用红外光谱仪、扫描电子显微镜和电子万能试验拉伸机研究了不同亚胺化温度对PI无纺布性能的影响。结果表明:当亚胺化温度为250℃时,聚酰胺酸只是部分发生了亚胺化;亚胺化温度为300℃,聚酰胺酸开始完全亚胺化成为聚酰亚胺,同时,聚酰亚胺纤维出现了不同程度的收缩、弯曲和交联;当亚胺化温度从2500(2升高到300℃时,PI无纺布薄膜的拉伸强度由4.92MPa提高到7.76MPa,断裂伸长率从11.3%增加到29.5%。  相似文献   

5.
以N,N-二甲基乙酰胺(DMAc)为溶剂,3,3',4,4'-二苯醚四甲酸二酐(ODPA)和4,4'-二氨基二苯醚(ODA)为单体,利用高压静电纺丝技术,制备了聚酰胺酸(PAA)和聚酰亚胺(PI)非织造布,并采用扫描电镜(SEM)对PAA及PI非织造布的表面形态进行表征,研究了PI非织造布的力学性能。结果表明:经300℃热亚胺化处理得到的PI非织造布,纤维平均直径减小到500nm以下,纤维的带状形貌与PAA明显不同,并且出现了收缩、弯曲等现象。静电纺丝法制得的PI非织造布的力学性能仍然比较优越。  相似文献   

6.
超细碳纤维毡的制备及其形貌研究   总被引:1,自引:0,他引:1  
采用静电纺丝法制备了聚酰胺酸(PAA)无纺布纤维毡,通过亚胺化工艺得到聚酰亚胺(PI)纤维毡,再以PI纤维毡为前驱体经高温碳化工艺制备PI基超细碳纤维毡,并对制得的PI基超细碳纤维毡进行了扫描电镜(SEM)形貌分析和元素分析。经SEM分析得知,随着碳化温度的升高碳纤维毡中纤维的直径逐渐减小,其分布略变窄,主要分布在200-300nm之间,当碳化温度达到1000℃时,PI基超细碳纤维毡中纤维的碳含量为96.16%。  相似文献   

7.
采用原位聚合法制备聚酰氨酸(PAA)和聚苯胺(PANI),使用静电纺丝技术制备PAA/PANI复合纤维膜,经热亚胺化处理后得到聚酰亚胺(PI)/PANI复合纤维膜。通过扫描电子显微镜观察了PI/PANI复合纤维膜的微观形貌,使用红外光谱仪对PI/PANI复合纤维膜的官能团进行了分析,使用高阻计研究了PI/PANI复合纤维膜的导电性能。实验结果表明,PI/PANI复合纤维膜的逾渗阈值为10wt%,在逾渗阈值时,PI/PANI复合纤维膜的体积电阻率为108Ω·cm。  相似文献   

8.
采用TMC-114钛酸酯偶联剂对纳米氧化镁(MgO)粉末进行表面改性,然后在合成聚酰胺酸(PAA)过程中加入改性纳米MgO,制得高强高模聚酰胺酸纺丝液,再通过干法纺丝和热拉伸工艺,得到耐热型高强高模聚酰亚胺(PI)纤维。利用纤维强伸度仪、扫描电子显微镜(SEM)、热失重分析(TGA)、动态机械热分析(DMA)等测试技术对纤维性能进行表征,同时测定纤维的耐碱性能。结果表明:改性后的PI纤维保持了较好的力学性能和表面形貌,还将初始热分解温度提高了约30℃,将玻璃化转变温度提高了约50℃,大幅度提升了纤维的热稳定性能;另外,纤维耐碱性能也提高了约3%,显著地延长了产品在恶劣条件下的使用寿命。  相似文献   

9.
《合成纤维工业》2017,(1):50-53
以4,4'-(六氟异丙烯)二酞酸酐(6FDA)与4,4'-双(4-氨基苯氧基)二苯砜(BAPS)为反应单体,以N-甲基-2-吡咯烷酮(NMP)为溶剂,合成了聚酰胺酸(PAA),将PAA溶液采用流延成膜的方法制备成薄膜;另外,将PAA溶液采用干-湿法纺丝工艺制得PAA中空纤维膜,再将PAA薄膜及其中空纤维膜在300℃左右的高温热环化制得6FDA-BAPS型聚酰亚胺(PI)膜。研究了6FDABAPS型PI及其中空纤维膜的结构与性能。结果表明:所合成的6FDA-BAPS型PI为目标产物,其在NNP、N,N-二甲基乙酰胺、四氢呋喃中具有良好的溶解性能。6FDABAPS型PI中空纤维膜外皮层致密、支撑层疏松多孔,该中空纤维膜具有较高的热学性能和力学性能,在氮气氛围中热失重5%的温度为511℃,断裂强度为26.5 MPa。  相似文献   

10.
《合成纤维》2017,(5):28-32
通过静电纺丝制备聚丙烯酸(PAA)纳米纤维膜,并以乙二醇(EG)为交联剂、硫酸(H_2SO_4)为引发剂,对制备的PAA纳米纤维膜进行热交联,以提高其在水中的稳定性。采用扫描电子显微镜对纤维的表面形貌进行表征,发现当PAA溶液质量分数为9%、交联剂EG质量分数为12%、纺丝电压为20 k V时,溶剂挥发完全,而且纤维直径分布均匀。试验还对交联温度及交联时间进行了研究,发现PAA纳米纤维膜在140℃的热处理条件下形成酯,而在150℃及以上的热处理条件下形成酯和酸酐,且上述交联反应都能在1 h内完成。  相似文献   

11.
以联苯二酐与2,5-二(4-氨基苯基)嘧啶、4,4-二氨基二苯醚进行共聚,制备高相对分子质量的聚酰胺酸(PAA)纺丝原液,采用湿法纺丝、热环化、热拉伸制备共聚聚酰亚胺(PI)纤维,研究了热处理过程中PI纤维结构与性能的演变过程。结果表明:当热环化温度高于300℃时,PAA基本环化形成PI结构;在热拉伸作用下,PI纤维的凝聚态结构更加规整,且随拉伸倍数的提高,纤维的晶区取向度增加,同时伴随着力学性能的提升;当热拉伸倍数为2.00时,所得PI纤维的力学性能最佳,其拉伸强度及拉伸模量分别可达到21.8 cN/dtex和642.7 cN/dtex。  相似文献   

12.
采用三乙胺/乙酸酐混合液作环化剂对聚酰胺酸(PAA)进行部分环化,制备不同环化程度的聚酰胺酸/聚酰亚胺(PAA-PI)纺丝液,经湿法纺丝成形、高温拉伸得到PI纤维,通过红外光谱、热重分析、动态力学分析表征PI纤维的热稳定性和力学性能。结果表明:不同环化剂添加量的PAA-PI纺丝液的实际环化程度与理论值相符;预环化有利于提高PAA-PI初生纤维的热稳定性;部分环化的PAA-PI纺丝液有利于纤维的成形,且明显提高PI纤维的力学性能,但环化速度不宜过高;当环化程度为5%时,PI纤维的断裂强度最高达18.6 c N/dtex,相比未环化纤维提高16%。  相似文献   

13.
赵斯梅 《中国胶粘剂》2014,(9):26-28,44
以聚酰胺酸(PAA)为基体,通过正硅酸乙酯(TEOS)和异丙醇铝的水解缩合反应制得硅氧铝溶胶;然后采用加热聚合法将硅氧铝溶胶和PAA聚合,制备出纳米杂化PI(聚酰亚胺)薄膜。着重探讨了无机纳米粒子中n(Al)∶n(Si)比例对不同纳米杂化PI薄膜的结构、微观形貌、热稳定性、电击穿性能和耐电晕性能等影响。研究结果表明:当w(总纳米粒子)=12%(相对于PI质量而言)、n(Al)∶n(Si)=1∶4时,纳米杂化PI薄膜的综合性能相对较好,此时其热稳定性和电绝缘性能优异。  相似文献   

14.
采用4,4’-二氨基二苯醚和1,6-己二胺(HDA)为二胺单体,与均苯四甲酸酐(PMDA)在二甲基乙酰胺(DMAc)中共聚得到聚酰胺酸(PAA)纺丝原液,通过干法纺丝工艺路线纺制PAA初生纤维,利用热酰亚胺化制备了共聚型聚酰亚胺(PI)纤维;通过红外光谱分析、动态力学分析、热重分析、X射线衍射等手段分析了PI纤维的力学性能及热性能。结果表明:红外光谱分析发现HDA的长亚甲基链引入到PI的链中;当HDA质量分数为20%时,PI纤维的断裂强度和模量分别为5.1 cN/dtex和76 cN/dtex;动态力学和热重分析发现,纤维的玻璃化转变温度为315~380℃,热稳定性在400℃以上;纤维经热处理后聚集态结构存在一定的有序性。  相似文献   

15.
利用均苯四甲酸二酐(PMDA)、4,4'-二氨基二苯醚(4,4'-ODA)和自制三单体在强极性非质子有机溶剂N,N-二甲基乙酰胺(DMAc)中进行共缩聚反应,制得高粘度的聚酰胺酸(PAA)溶液,经涂膜、热亚胺化,得到坚韧透明的聚酰亚胺(PI)薄膜,其具有较好的拉伸断裂强度和合适的伸长率;同时将得到的PAA溶液进行湿法纺丝,制成PAA纤维,采用热亚胺化和高温拉伸的方法制得PI纤维,其断裂强度能达到3.67cN/dtex。  相似文献   

16.
聚酰亚胺纤维的制备及其结构研究   总被引:4,自引:2,他引:2  
将均苯四甲酸二酐(PMDA)和4,4’-二氨基二苯醚(ODA)在N-甲基吡咯烷酮(NMP)中进行溶液聚合得到聚酰胺酸(PAA)溶液,并用该溶液进行干湿法纺丝得到PAA纤维,分别用化学酰亚胺化法和热酰亚胺化法得到聚酰亚胺(PI)纤维。研究了凝固浴组成和工艺条件对PAA形态结构和纤维性能的影响,以及不同酰亚胺化方法对PI纤维形态结构和性能的影响。结果表明:以甲醇为凝固浴制备的PAA初生纤维,无孔致密,最高拉伸强度和初始模量分别为2.21 cN/dtex和40.73 cN/dtex;采用化学酰亚胺化法制得的PI纤维中存在少许孔洞缺陷,其强度较低,热酰亚胺化法制得的PI纤维无孔致密,其强度和模量分别达到2.83 cN/ dtex和43.4 cN/dtex。  相似文献   

17.
聚酰胺酸酰亚胺化条件及其对聚酰亚胺力学性能的影响   总被引:1,自引:0,他引:1  
采用均苯四酸二酐(PMDA)和4,4'-二氨基二苯醚(ODA)为单体,N-甲基吡咯烷酮(NMP)为溶剂,合成了黏度为1.87 dL/g的聚酰胺酸(PAA)。对聚酰胺酸分别进行了热酰亚胺化和化学酰亚胺化处理,研究了完全酰亚胺化所需的条件以及不同酰亚胺化方式对聚酰亚胺(PI)纤维条断裂强度的影响;对PAA初生纤维条进行拉伸和酰亚胺化处理的顺序不同,所得到的聚酰亚胺(PI)纤维条的力学性能不同,采用先酰亚胺化再拉伸的方法能得到力学性能更优异的聚酰亚胺(PI)纤维条。  相似文献   

18.
采用不同结构的二酐、二胺单体设计制备了含对称结构单元和含不对称结构单元的聚酰胺酸(PAA),通过静电纺丝分别制备PAA、聚丙烯腈(PAN)、PAA/PAN复合物的纳米纤维膜(ENFs),将ENFs在空气中热稳定化后,在1 000℃的氮气气氛中碳化,制成不同前驱体的静电纺碳纳米纤维膜(ECNFs);研究PAA结构单元的对称性及PAA与PAN的复合对ENFs的热稳定化、碳化行为以及ECNFs导电性能的影响。结果表明:含不对称结构单元PAA的ENFs碳化收率较高,制备的ECNFs石墨微晶尺寸较大;将含不对称结构单元PAA与PAN复合时ENFs在1 000℃碳化时质量保持率达45%,且得到的ECNFs的石墨微晶尺寸与平均堆叠层数分别达1.69 nm和4.71,优于其他前驱体的ECNFs的微晶结构;PAA中的不对称结构单元及其与PAN的复合都有助于提升ECNFs的电导率,复合物的ECNFs的电导率最高可达9.08 S/cm;含不对称结构单元PAA与PAN形成了良好的协同碳化效应,可促使ECNFs的石墨晶粒的堆积和生长,提高ECNFs的导电性能。  相似文献   

19.
通过均苯四甲酸二酐与4,4’-二氨基二苯基醚缩聚反应制备了聚酰胺酸(PAA)。采用溶胶-凝胶法和超声波机械共混法制备了不同纳米SiO2含量的PAA/纳米SiO2共混胶液,经高温亚胺化得到聚酰亚胺(PI)/纳米SiO2复合材料。利用原子力显微镜(AFM)对PI/纳米SiO2复合材料与杜邦公司的KAPTON耐电晕复合材料及其电晕试验后的复合材料进行了表面形貌、结构和性能比较。结果表明,溶胶-凝胶法和超声波机械共混法制备的PI薄膜中的无机相是无定形的,而KAPTON薄膜中的无机相是缨束状的,具有取向的微观结构。超声波机械共混法具有很好的分散作用,而其有机相与无机相之间结合力较溶胶-凝胶法弱。  相似文献   

20.
可溶性的三硅醇异丁基倍半硅氧烷(TS-POSS)纳米粒子在聚合物膜中具有良好的相容性和分散性,可以在改善复合膜的力学性能的同时避免对孔径分布造成不利影响。本文采用“二步法”先合成PAA/TS-POSS前驱体纺丝溶液,TS-POSS的添加方式为物理共混。再经静电纺丝、热处理等步骤后制成PI/TS-POSS纳米纤维膜。本文对其微观结构、孔径大小以及机械性能等进行了测试分析。结果表明, TS-POSS纳米粒子的加入没有改变复合膜的非晶结构。相较于纯PI膜,3%TS-POSS纳米粒子添加量的PI/TS-POSS复合纤维膜具有更小的平均孔径(0.85μm)和更好的力学拉伸性能(15.08 MPa)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号