首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical characterization of dual-metal-planar Schottky diodes on silicon carbide is reported. The devices were fabricated on both 6H- and 4H-SiC by using titanium (Ti) and nickel silicide (Ni/sub 2/Si) as Schottky metals. These rectifiers yielded the same forward voltage drop as the Ti diodes and leakage current densities comparable to those of the Ni/sub 2/Si diodes. The reduction of the reverse leakage current density, with respect to that of the Ti diodes, was about three orders of magnitude in 6H and about a factor of 30 in 4H-SiC. All that results in a consistent reduction of the device power dissipation. Electrical characterization of the devices at different temperatures provided insight into the carrier transport mechanism. In particular, the electrical behavior of the system was explained by an "inhomogeneous" Schottky barrier model, in which the low Ti barrier determines the current flow under forward bias, whereas the high Ni/sub 2/Si barrier dominates the reverse bias conduction by the pinchoff of the low barrier Ti regions.  相似文献   

2.
Diamond,as an ultra-wide bandgap semiconductor,has become a promising candidate for next-generation microelec-tronics and optoelectronics due to its numerous advantages over conventional semiconductors,including ultrahigh carrier mo-bility and thermal conductivity,low thermal expansion coefficient,and ultra-high breakdown voltage,etc.Despite these ex-traordinary properties,diamond also faces various challenges before being practically used in the semiconductor industry.This review begins with a brief summary of previous efforts to model and construct diamond-based high-voltage switching diodes,high-power/high-frequency field-effect transistors,MEMS/NEMS,and devices operating at high temperatures.Following that,we will discuss recent developments to address scalable diamond device applications,emphasizing the synthesis of large-area,high-quality CVD diamond films and difficulties in diamond doping.Lastly,we show potential solutions to modulate diamond’s electronic properties by the“elastic strain engineering”strategy,which sheds light on the future development of diamond-based electronics,photonics and quantum systems.  相似文献   

3.
High-temperature (500-580°C) current-voltage (I-V ) characteristics of gold contacts to boron-doped homoepitaxial diamond films prepared using a plasma-enhanced chemical vapor deposition (CVD) method are described. Schottky diodes were formed using gold contacts to chemically cleaned boron-doped homoepitaxial diamond films. These devices incorporate ohmic contacts formed by annealing Au(70 nm)/Ti(10 nm) layers in air at 580°C. The experiments with homoepitaxial diamond films show that the leakage current density increases with the contact area. This implies that a nonuniform current distribution exists across the diode, presumably due to crystallographic defects in the diamond film. As a result, Au contacts with an area >1 mm2 are essentially ohmic and can be used to form back contacts to Schottky diodes. Schottky diodes fabricated in this matter also show rectifying I-V characteristics in the 25-580°C temperature range  相似文献   

4.
Early predictions that diamond would be a suitable material for high performance, high power devices were not supported by the characteristics of diodes and field effect transistors (FETs) fabricated on boron doped (p-type) thin film material. In this paper commercially accessible polycrystalline thin film diamond has been turned p-type by the incorporation of near surface hydrogen; mobility values as high as 70 cm2 V−1 s−1 have been measured for films with a carrier concentration of 5×1017 cm−3. Schottky diodes and metal–semiconductor FETs (MESFETs) have been fabricated using this approach which display unprecedented performance levels; diodes with a rectification ratio >106, leakage currents <1 nA, no indication of reverse bias breakdown at 100 V and an ideality factor of 1.1 have been made. Simple MESFET structures that are capable of switching VDS values of 100 V with low leakage and current saturation (pinch-off) characteristics have also been fabricated. Predictions based upon experiments performed on these devices suggest that optimised device structures will be capable of operation at power levels up to 20 W mm−1, implying that thin film diamond may after all be an interesting material for power applications.  相似文献   

5.
A technique is described for fabricating high-speed metal-insulator-semiconductor-insulator-metal (MISIM) photodetectors for high-speed fiber-optic systems. These devices make use of a Langmuir-Blodgett film enhanced Schottky barrier to achieve broadband linear response to 13 GHz at low bias voltage (5 V) with ~0.9 A/W external responsivity, 15 V breakdown voltage, and ~2 μA dark current. A gain of about 2 and a 5% tail in the temporal response are analyzed. The needed bias and the device processing are compatible with those for integrated receivers  相似文献   

6.
Whisker contacted GaAs Schottky barrier diodes are the standard devices for mixing and multiplier applications in the THz frequency range. This is mainly due to their minimum parasitics and mature technology. But with the decreasing size of the anode contact, which is required for operation at high frequencies (up to approx. 3 THz), the reliability and the micro-structural understanding of the Schottky barrier becomes increasingly important. This contribution presents new results concerning the reliability of Schottky diodes and the physical properties of small-area Schottky junctions, especially at low current densities. For these purposes a number of different Schottky diodes have been fabricated with different epilayer doping concentrations and anode diameters. Measured I/V characteristics show that the diode current deviates considerably from the ideal thermionic current behavior with decreasing diode diameter. This deviation shows an exponential dependence on the diode voltage and is a function of the doping concentration of the active layer. For a given doping concentration in the epi-layer and decreasing anode diameter, this phenomenon shifts the minimum of the ideality factor towards higher current densities. An explanation is given in terms of a difference of the cyrstallinity of the polycrystalline platinum films on the GaAs for decreasing SiO2 aperture size in connection with a reduced Pt mobility in the electrolyte. The reliability of Schottky barrier diodes under thermal and electrical stress has been investigated on different THz Schottky diode structures. The results show that the barrier height and the ideality factor of the fabricated structures are not affected by thermal stress. Electrical stress induced by large forward currents up to a current density of 10 kA/mm2 even leads to a slight increase of the barrier height and a reduction of the series resistance.  相似文献   

7.
Visible and infrared (IR) rare-earth-activated light emission has been obtained from Er-doped GaN electroluminescent devices (ELD). The ELD consists of an in-situ Er-doped GaN layer grown on either a sapphire or silicon (Si) substrate. The temperature dependence of the light emission and the current conduction is reported. The EL spectrum shows two main visible peaks at 537 and 558 nm and a group of closely spaced IR peaks clustered around 1550 nm. The 558 nm visible transition is dominant below 250 K, whereas the 537 nm transition is dominant at higher temperature peaking at 300 K. Temperatures from 240-500 K have minimal effect on IR emission intensity. A simple model consisting of two back-to-back Schottky diodes explains the current-voltage dependence. The effect of Er doping and substrate type on carrier transport is investigated as a function of voltage and temperature. Specifically, there is evidence that an Er-related defect is responsible for carrier generation at temperatures above 300 K. The effect of bias polarity on spatial confinement of the light emission in different areas of the devices is discussed. The model indicates that both electric field intensity and current density are important in producing light emission. The model also accounts for the uniformity of the emission under the electrodes when considering the type of substrate used for GaN:Er device growth  相似文献   

8.
采用微电子平面工艺,高真空电子束热蒸发金属Ni分别作肖特基接触和欧姆接触,二级场限环终端表面保护,研制出Ni/4H-SiC肖特基势垒二极管(SBD)。I-V特性测量说明,Ni/4H-SiCSBD有较好的整流特性,热电子发射是其主要的运输机理。反向击穿电压达1500V,理想因子为1.2,肖特基势垒高度为0.92eV。  相似文献   

9.
基于结终端扩展的4H-SiC肖特基势垒二极管研制   总被引:1,自引:1,他引:0  
采用高真空电子束热蒸发金属Ni分别作肖特基接触和欧姆接触,离子注入形成结终端扩展表面保护,研制出Ni/4H-SiC肖特基势垒二极管(SBD)。I-V特性测量说明,Ni/4H-SiCSBD有较好的整流特性,热电子发射是其主要的运输机理。实验测量其反向击穿电压达1800V,且反向恢复特性为32ns。  相似文献   

10.
Tungsten is a suitable metal contact for high-temperature applications. We fabricated 1.7-kV and 6-kV 4H-SiC junction barrier Schottky (JBS) diodes with a tungsten Schottky contact with different geometries, and their forward characteristics were measured up to 300°C. The 1.7-kV diodes exhibited unipolar conduction up to 6 V at 275°C, whereas 6-kV diodes showed ideal on-resistance, R on. An optimized JBS design permits a higher breakdown voltage to be obtained than for the pure Schottky diode, with a reasonable increase (10%) of the on-resistance. Results demonstrate the feasibility of tungsten JBS diodes for fast-switching, high-voltage, and high-temperature applications.  相似文献   

11.
The Poisson's equation and the drift diffusion equations have been used to simulate the current–voltage characteristics of Schottky diode. The potential variation inside the bulk semiconductor near the metal–semiconductor contact was estimated first and then the current as a function of bias through the Schottky diode using silicon parameters were calculated over a wide temperature range. From the simulated current–voltage characteristics the diode parameters were extracted by fitting of current–voltage data into thermionic emission diffusion current equation. The derived barrier parameters are analysed to study the effect of various parameters, e.g. semiconductor thickness, doping concentration, temperature dependence of carrier mobility and energy band gap, on the current–voltage characteristics of Schottky diode in view of the thermionic emission diffusion current equations.  相似文献   

12.
This paper presents the results from analysis and modeling of the gas sensing performance, current conduction and gas detection mechanisms, and adsorption effects on device parameters of a Pt/SnOx/diamond-based gas sensor. The sensor is sensitive and demonstrates high, repeatable, and reproducible reaction. The sensor response in seconds to small concentrations of O2, CO, and H 2 gases. The current conduction mechanism of the diamond-based CAIS (catalyst/adsorptive-oxide/intrinsic-diamond/semiconductor-diamond) diode was found to be dominated by space charge limited conduction in the forward bias region and tunneling in the reverse bias region, distinctively different from silicon based sensors. While gas adsorption causes a change in the barrier height and tunneling factor, no significant change was observed in the ideality factor over the temperature range investigated. The detection mechanism of the sensor is attributable to the change in occupancy ratio of the oxygen vacancies of the adsorptive oxide layer upon oxygen exposure, increasing the contact potential between adsorptive-oxide and intrinsic-diamond  相似文献   

13.
The Poisson’s equation and drift–diffusion equations are used to simulate the current–voltage characteristics of Schottky diode with an inverse doped surface layer. The potential inside the bulk semiconductor near the metal–semiconductor contact is estimated by simultaneously solving these equations, and current as a function of bias through the Schottky diode is calculated for various inverse layer thicknesses and doping concentrations. The Schottky diode parameters are then extracted by fitting of simulated current–voltage data into thermionic emission diffusion equation. The obtained diode parameters are analyzed to study the effect of inverse layer thickness and doping concentration on the Schottky diode parameters and its behavior at low temperatures. It is shown that increase in inverse layer thickness and its doping concentration give rise to Schottky barrier height enhancement and a change in the ideality factor. The temperature dependences of Schottky barrier height and ideality factor are studied. The effect of temperature dependence of carrier mobility on the Schottky diode characteristics is also discussed.  相似文献   

14.
基于SiC结势垒肖特基(JBS)二极管工作原理及其电流/电场均衡分布理论,采用高温大电流单芯片设计技术及大尺寸芯片加工技术,研制了1 200 V/100 A高温大电流4H-SiCJBS二极管.该器件采用优化的材料结构、有源区结构和终端结构,有效提高了器件的载流子输运能力.测试结果表明,当正向导通压降为1.60 V时,其正向电流密度达247 A/cm2(以芯片面积计算).在测试温度25和200℃时,当正向电流为100 A时,正向导通压降分别为1.64和2.50 V;当反向电压为1 200 V时,反向漏电流分别小于50和200μA.动态特性测试结果表明,器件的反向恢复特性良好.器件均通过100次温度循环、168 h的高温高湿高反偏(H3TRB)和高温反偏可靠性试验,显示出优良的鲁棒性.器件的成品率达70%以上.  相似文献   

15.
锁钒  于军胜  黎威志  邓静  林慧  蒋亚东 《电子学报》2007,35(11):2050-2054
研究了以NPB为空穴传输层、Alq3为发光层的双层异质结有机电致发光器件的薄膜厚度对器件性能的影响.制备了一系列具有不同NPB和Alq3厚度的器件并测试了其电致发光特性.结果表明,器件电流随Alq3与NPB厚度变化的关系并不相同.不同有机层厚度双层器件的电流机制符合陷阱电荷限制(TCL)理论,随外加电压的增大,器件电流经历了欧姆电导区、TCL电流区、陷阱电荷限制-空间电荷限制(TCL-SCL)过渡区三个区域的变化.当有机层厚度匹配为NPB(20nm)/Alq3(50nm)时可以获得性能优良的器件.器件的流明效率-电压关系曲线的变化规律是在低电压区较快达到最大值,然后随电压的增加逐渐降低.  相似文献   

16.
Large-area Schottky diodes have been made on epitaxial GaAs produced by liquid-phase, alkyl and trichloride-vapour-phase techniques. D.L.T.S. transient-capacitance experiments failed to detect electron traps in the material in each case. A very low level of low-frequency excess noise was found in diodes with ideal current/voltage characteristics, but devices with excess current at low bias were noisier.  相似文献   

17.
Barrier height engineering of n-GaAs-based millimeter-wave Schottky diodes using strained InGaAs/GaAs and InGaP/GaAs heterostructures and a high doping surface layer is presented. The Schottky barrier height can be varied between Φfb=0.52 eV and Φfb=1.0 eV. The use of a pseudomorphic InGaAs layer and/or a thin high doping layer at the surface significantly reduces the Schottky barrier height. This is advantageous for low-drive zero bias mixing applications, A full quantum mechanical numerical calculation is presented to simulate the influence of different high doping layer thicknesses on the diode's dc characteristic. The theoretical results are compared with experimental results, For reverse bias applications (e.g., varactors) a barrier height and breakdown voltage enhancement is realized with a lattice matched InGaP/GaAs heterostructure. The barrier height value is determined by temperature dependent dc-measurements. The epitaxial layered structures are grown by molecular beam epitaxy. The diode devices are fabricated in a fully planar technology using selective oxygen implantation for lateral isolation. The diode's cut-off frequencies are in the THz-range  相似文献   

18.
金刚石电子器件的研究进展   总被引:1,自引:0,他引:1  
袁明文 《微纳电子技术》2012,(10):643-649,672
简述了金刚石半导体电气性质,即高击穿电场、宽带隙、高载流子饱和速度、高载流子迁移率和高热导率。回顾了金刚石器件的研究进程。讨论了器件的工作机理,包括掺杂和空穴积累层。详细描述了几种具有潜力的金刚石电子器件,如高压二极管和功率场效应管。尽管金刚石器件研究仍存在一些问题,如掺杂机理复杂,金刚石的单晶尺寸太小等,严重制约金刚石电子的进展,但是由于金刚石是超高功率和高温器件的优良半导体材料,具有替代行波管技术的潜力。当前,CVD金刚石已经大量用于微电子和光电子,包括激光二极管、微波器件、半导体散热器等。  相似文献   

19.
The static and dynamic characteristics of large-area, high-voltage 4H-SiC Schottky barrier diodes are presented. With a breakdown voltage greater than 1200 V and a forward current in excess of 6 A at 2 V forward bias, these devices enable for the first time the evaluation of SiC Schottky diodes in practical switching circuits. These diodes were inserted into standard test circuits and compared to commercially available silicon devices, the results of which are reported here. Substituting SiC Schottky diodes in place of comparably rated silicon PIN diodes reduced the switching losses by a factor of four, and virtually eliminated the reverse recovery transient. These results are even more dramatic at elevated temperatures. While the switching loss in silicon diodes increases dramatically with temperature, the SiC devices remain essentially unchanged. The data presented here clearly demonstrates the distinct advantages offered by SiC Schottky rectifiers, and their emerging potential to replace silicon PIN diodes in power switching applications  相似文献   

20.
Poisson’s equation and the drift–diffusion equations are used to simulate the current–voltage characteristics of a Schottky diode with an inverse doped surface layer. The potential inside the bulk semiconductor near the metal–semiconductor contact is estimated by simultaneously solving these equations, and then current as a function of bias through the Schottky diode is calculated. The Schottky diode parameters are extracted by fitting of simulated data to the thermionic emission diffusion equation. The simulation is carried out for various inverse layer thicknesses and doping concentrations. The obtained diode parameters are analyzed to study the effect of the inverse layer thickness and doping concentration on Schottky diode modification and its behavior at low temperatures. It is shown that an increase in the inverse layer thickness and doping concentration leads to Schottky barrier height enhancement and a change in the ideality factor. The temperature dependences of the Schottky barrier height and ideality factor are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号