首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
A 10Gbit/s recirculating system is configured with Chirped Fiber Bragg Grating (CFBG) for the dispersion compensation. For the first time, the transmission distance in the loop reaches 1000km with bit error rate of 10-9. The effect of the group delay ripple of the fiber grating is also investigated in the recirculating systems, and it is shown that the transmission distance is limited to 4 cycles (4×167.1km ) in the loop with the power penalty fluctuation below 1.0dB. Thus the group delay ripple should be reduced to allow for the wavelength drift of±5GHz. At the end of this letter, the principles are given for designing long haul recirculating systems with dispersion compensation CFBG.  相似文献   

2.
A simple two-section polarization mode dispersion(PMD) compensator is proposed for multichannel PMD compensation, which can compensate two or even more channels simultaneously. Because of the statistical characteristics and the frequency-dependence of PMD, for current single mode fiber with moderate PMD, the probability that all channels are severely degraded at the same time is extremely small, which makes it possible to compensate a dense wavelength division multiplexing(DWDM) transmission system with moderate PMD using this compensator. It is shown that the outage probability of a 40×43 Gb/s DWDM transmission system using this compensator is decreased significantly from 3.6×10-3 to 3.6×10-5.  相似文献   

3.
Using mean field method proposed in Ref. [4], the 40 Gb/s multi--channel WDM optical fiber transmission systems with different dispersion maps are simulated. By this method, the computation time can be greatly reduced since following only the full time evolution of a limited number of channels while treating the other ehannels as continuous wave. But since dispersion plays an important role in the process of FWM and XPM,different dispersion maps will affect the application of the method. The dependence of the method on dispersion maps is investigated. The results not only confirm the mean field method,but also give useful approach for system design.  相似文献   

4.
Transmission performance of electroabsorption modulator in 10 Gb/s transmission systems has been simulated and analyzed under the condition of taking into account the chirp,extinction ratio, transmissivity and rise/fall time. Results show that short transmission distance without EDFA after EAM can be used in future metropolitan area network,but the transmissivity must be carefully considered. The sampling time range and decision level can be optimized to reduce the bit error ratio.  相似文献   

5.
Split-step digital backward propagation (DBP) can be combined with coherent detection to compensate for fiber nonlinear impairments.A large number of DBP steps is usually needed for a long-haul fiber system,and this creates a heavy computational load.In a trade-off between complexity and performance,interchannel nonlinearity can be disregarded in order to simplify the DBP algorithm.The number of steps can also be reduced at the expense of performance.In periodic dispersion-managed long-haul transmission systems,optical waveform distortion is dominated by chromatic dispersion.As a result,the nonlinearity of the optical signal repeats in every dispersion period.Because of this periodic behavior,DBP of many fiber spans can be folded into one span.Using this distance-folded DBP method,the required computation for a transoceanic transmission system with full inline dispersion compensation can be reduced by up to two orders of magnitude with negligible penalty.The folded DBP method can be modified to compensate for nonlinearity in fiber links with non-zero residual dispersion per span.  相似文献   

6.
王盖 《光电子快报》2011,7(1):53-56
The adaptive polarization mode dispersion(PMD) compensation in high-speed transmission system has become more and more necessary for the link PMD causing strong signal distortions.A dynamic adaptive PMD compensator in 40 Gb/s polar-multiplex differential quadrature phase shift keying(PM-DQPSK) system is reported.Experimental results show that the PMD compensator can track the average polarization state variation at 65 rad/s without any lost of the optimum tracking.The 1st-order PMD compensation is demonstrated experimentally,and the compensator can increase the maximal tolerable PMD value by 26 ps from 17 ps to 43 ps in an optical transmission system.  相似文献   

7.
In this paper,we describe the generation,detection,and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching.A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers,one Mach-Zehnder modulator (MZM),and one Mach-Zehnder delay interferometer (MZDI).An RZ-FSK signal is generated by cascading a dual-arm MZM,which is driven by a sinusoidal voltage at half the bit rate.Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection.We perform numerical simulation on two types of frequency modulation schemes using MZM or PM,and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal.In the proposed scheme,a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK),under varying dispersion management.The performance of an RZ-FSK signal in a 4 × 40 Gb/s WDM transmission system is discussed.We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal.The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed.We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF),under the post-compensation management scheme.Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying),it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate.It can also be used in orthogonal label-switching as the modulation format for the payload or the label.As an example,we propose a simple orthogonal optical label switching technique based on 40 Gb/s FSK payload and 2.5 Gb/s intensity modulated (IM) label.  相似文献   

8.
The phase estimation based on M-th power algorithm is employed in a differential quadrature phase-shift keying (DQPSK) coherent optical fiber communication system, and the system performance improvement is investigated through numerical simulations. It is found that the application of phase estimation algorithm can restrain the phase noise induced by laser linewidth and fiber nonlinear effects, and recover the carrier phase, so the transmission distance of a 40 Gb/s DQPSK-RZ system can be extend...  相似文献   

9.
A remnant dispersion monitoring method based on spectral-shift of SOA in high speed optical communication system with CSRZ format and single channel speed of 40 Gbit/s is proposed. The system performance can be optimized by careful choosing bandwidth and center wavelength of the optical fiber grating filter. The dynamical monitoring range is ±60 ps/nm and the monitoring precision is about 5 ps/nm. This method can be suitable for the application in dynamical dispersion compensation of high speed optical communication systems.  相似文献   

10.
This paper proposes a novel photonic crystal optical fiber which can support 30 orbital angular momentum(OAM)modes transmission and possesses relatively flat and low dispersion.The OAM modes can be well-separated due to the large effective refractive index difference(above 10^-4)between the eigenmodes.The only material of the designed fiber is silica.The dispersion of each OAM mode is controlled in the range of 50-100 ps·nm^-1·km^-1 and the total dispersion variation is below 10 ps·nm^-1·km^-1 from 1500 nm to 1600 nm.Moreover,the confinement loss of each OAM mode is below 8.17×10^-10 dB/m at 1550 nm,and the nonlinear coefficients is less than 0.71 W^-1/km for all modes at 1550 nm.With all these good features,this proposed optical fiber is promising to be applied in fiberbased OAM communication systems.  相似文献   

11.
By optimizing the fabrication process of the chirped optical fiber Bragg grating (CFBG), some key problems of CFBG are solved, such as fabrication repetition, temperature stability, group delay ripple (GDR), fluctuation of the reflection spectrum, polarization mode dispersion (PMD), interaction of cascaded CFBG, and so on. The CFBG we fabricated can attain a temperature coefficient less than 0.0005 nm/℃, and the smoothed GDR and the fluctuation of the reflection spectrum are smaller than 10ps and 0.5dB, respec-tively. The PMD of each CFBG is less than 1 ps and the dispersion of each grating is larger than -2600 ps/(nm·km). With dispersion compensated by the CFBGs we fabricated, a 13×10 Gbit/s 3100 km ultra long G.652 fiber transmission system is successfully imple-mented without electric regenerator. The bit error rate (BER) of the system is below 10-4 without forward error correction (FEC); when FEC is added, the BER is below 10-12. The power penalty of the carrier-suppressed return-to-zero (CSRZ) code transmission system is only 2.5 dB.  相似文献   

12.
In this paper, we present a comprehensive comparison of the performance of an 80-km-per-span erbium-doped fiber amplifier (EDFA) system and a hut-skipped (160-km-per-span) all-Raman system over standard single-mode fiber (SSMF) for the first time, using semianalytic models. The numerical results reveal that a hut-skipped all-Raman system (using one-order Raman pumping) can achieve comparable performance as the conventional 80-km-per-span EDFA system for a common 50-GHz-spaced 80 /spl times/ 10 Gb/s nonreturn-to-zero (NRZ) wavelength division multiplexing (WDM) system at typical fiber loss of 0.22 dB/km. For 100-GHz-spaced 40 /spl times/ 40 Gb/s carrier-suppressed return-to-zero (CS-RZ) WDM transmission, it was found that a hut-skipped all-Raman system can achieve even better performance than the current 80-km-per-span EDFA system. It was also found that the impact of pattern-dependent Raman crosstalk is more severe than interchannel cross-phase modulation (XPM) in a hut-skipped all-Raman system with 80 /spl times/ 10 Gb/s capacity.  相似文献   

13.
基于10 Gb/s传输链路的40 Gb/s光传输实验研究   总被引:2,自引:2,他引:0  
基于中国自然科学基金网(NSFCNet)的400 km×10 Gb/s光传输链路实现了40 Gb/s光传输,没有出现误码率(BER)平台,说明在常规的中短距离10 Gb/s系统可以直接升级至40 Gb/s系统,而不需要升级传输链路。但是,由于相对10 Gb/s系统而言40 Gb/s系统的色散容限非常小,在升级时必须精确补偿原有链路的色散,在接收机前一般需要加可调色散补偿单元。同时,还分析了光纤注入功率对系统性能的影响,结果表明在设计这种由10 Gb/s向40 Gb/s升级的系统时,不仅要考虑信号带宽增加带来信噪比要求的提高,而且必须充分考虑光纤非线性的影响。  相似文献   

14.
The signal-induced change of the refractive index in an erbium-doped fiber amplifier (EDFA) causes a phase modulation imposed on a signal when passing the EDFA. In this paper, we apply our extended EDFA model on an optical communication system. The model includes this phase modulation, by including the nonlinear dispersion in an EDFA, and the spontaneous emission noise. The influence of these effects on an optical communication system is examined by means of Q-factor and eye diagram. We assume an intensity modulated-direct detection (IM-DD) system operating at 193 THz (1552.5 nm) with a bit rate of 10 Gb/s in the anomalous dispersion regime and a total fiber length of 500 km. The fibers are assumed to be dispersion shifted ones, EDFAs are used to compensate for the fiber loss. By numerical simulation we obtain results for the influence of the phase modulation (nonlinear dispersion) due to the signal induced change of the refractive index in an EDFA and the spontaneous emission noise at different input peak powers. Neglecting the signal-induced change of the refractive index strongly underestimates the Q-factor in the anomalous dispersion regime. Therefore it should be included for reliable system simulations. This can be done with the numerical model presented here  相似文献   

15.
We investigate the performance of 160 Gb/s WDM transmission with up to 100 km long fiber spans. Using differential quadrature phase-shift keying (DQPSK) and polarization division multiplexing (PolDM), a 160 Gb/s capacity per wavelength is realized at 40 Gsymbol/s rate. We demonstrate that in a relatively conventional EDFA-supported transmission line with an average span loss of 22 dB, a total distance of 292 km is reached with only three spans. Even without proper dispersion management and Raman amplification, we still observe clear eye openings for all channels. In this spectrally highly efficient system, we have achieved a bitrate × span distance product of 16 Tb/s km per wavelength which is, to our knowledge, the highest figure reported so far for 160 Gb/s WDM systems.  相似文献   

16.
基于啁啾光纤布拉格光栅的宽谱光单边带调制方法   总被引:1,自引:1,他引:0  
提出一种基于啁啾光纤布拉格光栅(CFBG)的宽谱光单边带(OSSB)调制实现方法。光双边带(ODSB)调制信号经过同一CFBG两个相反方向的反射,利用偏振控制器(PC)实现两个方向偏振态的正交。这种双反射CFBG(DR-CFBG)结构可以滤出光载波与其中一个边带实现OSSB调制,同时消除了反射谱内的色散,避免了滤波引起的相位畸变。利用实验制作的线性CFBG搭建了DR-CFBG,实验数据仿真结果表明,本文方法可以实现宽谱基带信号与加载数据信息射频信号的OSSB调制,结果表明传输距离大于6km时,40Gb/s NRZ信号OSSB调制传输有明显优势;加载2.5Gb/s的NRZ信号,OSSB调制传输50km,误码率为10-9时,20GHz射频为载波的功率代价比10GHz低3dB,比40GHz低1.2dB。改进CFBG的边沿斜率可以更好地抑制边带残留,提高OSSB调制信号的传输性能。  相似文献   

17.
崔景翠  俞谦  刘小明  范崇澄  彭江得 《中国激光》1999,26(11):1021-1026
在掺铒光纤放大器(EDFA)内部将增益箝制在增益谱平坦区,研制成增益箝制的EDFA,实现了波分复用(WDM)8×2.5Gb/s×450kmG.652光纤级联放大传输系统的动态增益均衡,在传输信道数量改变的动态运行情况下,在误码率为10-12时,接收机灵敏度变化0.5dB。  相似文献   

18.
This paper describes a novel design theory of long distance wavelength division multiplexed (WDM) dispersion-managed optical transmission systems. Assuming that the transmission distance, bit rate, and number of WDM channels are initially known, we investigate the optimum dispersion allocation and input power per channel to achieve the minimum channel spacing. Based on the design guidelines for single-channel and multichannel systems, we establish the optimal design strategy. Details of the design procedure are demonstrated for 2.5-, 5-, and 10-Gb/s 10000 km WDM systems by using computer simulations. Next, we study the impact of the fiber dispersion slope on the usable wavelength span, and show that the attainable capacity of the representative 5-Gb/s 10000 km WDM system employing the postcompensation scheme can not exceed 100 Gb/s. Finally, we propose several techniques to approach the ultimate capacity of the WDM system and show that up to 1 Tb/s (200×5 Gb/s) 10000 km system can be implemented without utilizing the in-line dispersion slope compensation scheme. We also discuss the 10 Gb/s-10000 km WDM system employing in-line dispersion slope compensation  相似文献   

19.
A 20 Gb/s-based soliton wavelength division multiplexed (WDM) transmission experiments using periodic dispersion compensation and dispersion slope compensation were demonstrated. Accumulated dispersion slope was compensated with two methods. The first method was periodical individual dispersion compensation. By using this technique, 60 Gb/s (20 Gb/s×3 WDM) transmission over 8000 km was demonstrated. The second method was the use of a dispersion-flattened transmission fiber. 160 Gb/s (20 Gb/s×8 WDM) transmission over 4000 km using periodically dispersion compensated dispersion-flattened fiber was also demonstrated  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号