首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

In wireless local area networks (WLANs), the traditional carrier sense multiple access with collision avoidance (CSMA/CA) medium access control (MAC) protocol cannot use the full benefits from multiuser multiple-input multiple-output (MU-MIMO) technique due to random medium access of the users. In this paper, we propose a carrier sensing based MAC protocol for a MU-MIMO based WLAN with full utilization of MU-MIMO technique. By modeling the WLAN system under the proposed MAC protocol as a discrete time Markov chain, we develop an analytical model for computing the saturation throughput in presence of path loss, Rayleigh fading and log-normal shadowing. The analytical model is then validated via simulation. By means of numerical and simulation results, we demonstrate that the proposed MAC protocol significantly improves throughput performance than the traditional CSMA/CA MAC protocol. Further, we compare the performance of the proposed MAC protocol with a MU-MIMO MAC protocol called Uni-MUMAC protocol and find that the proposed MAC protocol performs better than the Uni-MUMAC protocol. We also explore the effect of some of the network and wireless channel parameters on the performance of the proposed MAC protocol.

  相似文献   

2.
无线局域网中的预约CDMA接入技术   总被引:3,自引:0,他引:3  
在传统的无线MAC接入协议(如ALOHA,CSMA/CA,TDMA和CDMA)的基础上,重点探讨了基于码分多址的预约CDMA无线多址接入协议。该协议的在无线局域网接入时,无论在时间延迟还是吞吐量特性方面均比传统的无线接入协议有很大的改善。  相似文献   

3.
A combination of direct sequence code division multiple access (DS-CDMA) and p-persistent inhibit sense multiple access (ISMA) protocols is proposed for indoor wireless communications (IWC). The combination of these two protocols is called the hybrid CDMA/ISMA protocol. The performance of the hybrid CDMA/ISMA protocol is analyzed with a Markov model considering differential phase shift keying (DPSK) modulation. The performance is measured in terms of throughput and delay. The performance is also evaluated using computer simulation of which the results are in close agreement with the Markov model results. The study of indoor wireless communications using a hybrid CDMA/ISMA protocol can be useful for various applications in research and design offices, medical data communication in hospitals, etc  相似文献   

4.
Performance analysis of the IEEE 802.11 distributed coordinationfunction   总被引:1,自引:0,他引:1  
The IEEE has standardized the 802.11 protocol for wireless local area networks. The primary medium access control (MAC) technique of 802.11 is called the distributed coordination function (DCF). The DCF is a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with binary slotted exponential backoff. This paper provides a simple, but nevertheless extremely accurate, analytical model to compute the 802.11 DCF throughput, in the assumption of finite number of terminals and ideal channel conditions. The proposed analysis applies to both the packet transmission schemes employed by DCF, namely, the basic access and the RTS/CTS access mechanisms. In addition, it also applies to a combination of the two schemes, in which packets longer than a given threshold are transmitted according to the RTS/CTS mechanism. By means of the proposed model, we provide an extensive throughput performance evaluation of both access mechanisms of the 802.11 protocol  相似文献   

5.
In this paper, several TDMA-based packet multiple access protocols are studied and evaluated in the geostationary satellite environment. The distributed queueing random access protocol, DQRAP, originally proposed for HFC networks is adapted to the satellite environment. Another protocol, the announced retransmission random access protocol, ARRA, proposed for wireless networks is also studied. Both protocols are modeled and simulated in a VSAT network context. We then propose a new protocol which combines the advantages of both studied schemes and is more adapted to interactive multimedia applications over satellite uplinks. The generalized retransmission announcement protocol, GRAP, regroups the immediate access by contention at low loads, and the reservation access. At higher loads, to achieve a better channel efficiency. An analytical model is proposed to calculate the channel throughput obtained by GRAP under different loading conditions. Simulation results illustrate an improved throughput/delay characteristics and a higher protocol stability compared to both DQRAP and ARRA. Enhanced versions of the protocol are also proposed and evaluated to further improve its efficiency, with reasonable additional complexity  相似文献   

6.
As infrared wireless LANs for in-building applications become more popular because of their many advantages, it is of interest to design such LANs to support the ATM protocol and therefore provide wireless access to fixed ATM networks. The architecture of such a LAN is presented in this article. Emphasis is placed on the protocol stacks of the model to provide seamless operation with the wired network, on the cellular topology, and on the MAC protocol. Under the proposed topology the system performance is revealed in terms of packet dropping probability, average access delay, channel throughput, and statistical multiplexing gain for a range of system parameters  相似文献   

7.
In conventional IEEE 802.11 medium access control protocol, the distributed coordination function is designed for the wireless stations (WSs) to perform channel contention within the wireless local area networks (WLANs). Packet collision is considered one of the major issues within this type of contention-based scheme, which can severely degrade network performance for the WLANs. Research work has been conducted to modify the random backoff mechanism in order to alleviate the packet collision problem while the WSs are contending for channel access. However, most of the existing work can only provide limited throughput enhancement under specific number of WSs within the network. In this paper, an adaptive reservation-assisted collision resolution (ARCR) protocol is proposed to improve packet collision resulting from the random access schemes. With its adaptable reservation period, the contention-based channel access can be adaptively transformed into a reservation-based system if there are pending packets required to be transmitted between the WSs and the access point. Analytical model is derived for the proposed ARCR scheme in order to evaluate and validate its throughput performance. It can be observed from both analytical and simulation results that the proposed protocol outperforms existing schemes with enhanced channel utilization and network throughput.  相似文献   

8.
We propose the finite-state Markov channel (FSMC) model to the throughput analysis of DS CDMA/unslotted ALOHA wireless networks in the mobile environment. The FSMC model can characterize the correlation structure of Rayleigh fading process, and the degree of correlation depends on the Doppler frequency shift. The FSMC model is suited to the throughput analysis by queueing theory due to its Markov chain nature. The previous papers in DS CDMA/unslotted ALOHA wireless networks in Rayleigh fading consider a whole packet. They ignore that the channel gain or multiple access interference can change symbol-to-symbol. In our proposed analysis, both the channel gain and multiple access interference can change from symbol to symbol. It is not just a packet-level analysis in the previous papers, and is a more general symbol-level analysis. Our generalized scheme should be more suited to realistic Rayleigh fading in the mobile environment. We consider two cases: (1) the system without carrier load sensing protocol (CLSP) and (2) systems with CLSP. For both cases, we analyze the theoretical throughput by queueing theory for various averaged signal-to-noise ratios and Doppler frequency shifts, and the computer simulated throughput matches the theoretical throughput.  相似文献   

9.
A growing trend in the automation industry is to use wireless technologies to reduce cable costs and deployment time, unlock stranded information in deployed devices and enable wireless control applications. The WirelessHART protocol is the first open and interoperable industrial wireless sensor network standard, which proposes a combination of time division multiple access (TDMA) and channel hopping as a medium access control (MAC) protocol. TDMA is a schedule-based protocol, which is suitable for predictable cyclic traffic. However, for burst acyclic traffic, TDMA degenerates into an inefficient slotted ALOHA. In this article, we propose a complementary mechanism to TDMA, CCA-Embedded TDMA, which can be applied to improve the transmission efficiency and system stability of TDMA-based systems such as the WirelessHART protocol. A Markov model is proposed to evaluate the efficiency of system throughput and expected delay of CCA-Embedded TDMA. Furthermore, we show by analytical and simulation results that our proposed CCA-Embedded TDMA scheme can increase the throughput by 100% and reduce the expected delay by 75% for a common scenario. We also implement CCA-Embedded TDMA into an embedded system as a part of the WirelessHART MAC protocol. The experimental results verify the efficiency of CCA-Embedded TDMA and its backward compatibility with the WirelessHART protocol.  相似文献   

10.
The throughput performance of a wireless media access protocol taking into account the effect of correlated channel fading, capture, and propagation delay is analyzed. For efficient access on the uplink (mobile-to-base-station link), the protocol makes use of the uplink channel status information which is conveyed to the mobiles through a busy/idle flag broadcast on the downlink (base-station-to-mobile link). A first-order Markov model is used to describe the correlation in the packet success/failure process on a Rayleigh-fading channel. The analytical results obtained through the first-order Markov approximation of the channel are compared to those obtained from an independent and identically distributed (i.i.d.) channel model. The Markovian-fading channel model is shown to provide better performance results than the i.i.d. channel model. Simulations show that a first-order Markov approximation of the Rayleigh-fading process is quite accurate. An enhanced version of the access protocol to take advantage of the memory in the fading channel behavior is proposed and analyzed. The effect of retransmission of erroneous data packets and propagation delay on the throughput is also analyzed. It is shown that the access protocol with an error detect (ED) feature is efficient in slow fading (e.g., pedestrian user speeds), whereas a retransmission protocol is more efficient in fast fading (e.g., vehicular user speeds)  相似文献   

11.
In this article we present a simple yet accurate generic analytical model for a family of slotted CSMA/CA-based MAC protocols widely used in various wireless broadband access networks. The proposed model is based on a hierarchical three-level renewal process concept, which leads directly to some important MAC protocol performance metrics, such as throughput and average frame service time. The applicability of the model is demonstrated by extensive simulation results.  相似文献   

12.
Coskun  Mehmet B.   《Ad hoc Networks》2008,6(6):860-877
Designing a medium access control (MAC) protocol that simultaneously provides high throughput and allows individual users to share limited spectrum resources fairly, especially in the short-term time horizon, is a challenging problem for wireless LANs. In this paper, we propose an efficient cooperative MAC protocol with very simple state information that considers only collisions, like the standard IEEE 802.11 MAC protocol. However, contrary to the IEEE 802.11 MAC, the cooperative MAC gives collided users priority to access the channel by assigning them shorter backoff counters and interframe-spaces than users who did not participate in the collision event. In other words, collided users are the only ones allowed to transmit in the following contention period. For the cooperative MAC protocol, we utilize an analytical throughput model to obtain the optimal parameter settings. Simulation results show that the cooperative MAC provides significant improvement in short-term fairness and access delay, while still providing high network throughput.  相似文献   

13.
The hybrid MAC protocol specified by IEEE 802.11ad for millimeter wave wireless LANs consist of carrier sense multiple access/collision avoidance (CSMA/CA) during the contention based access periods (CBAPs) and TDMA during the service periods. To provide channel access during CBAP, the coverage area around the access point (AP) can be divided into several quasi omni (QO) beam levels. When uplink channel access during CBAP is considered, every directional multigigabit station residing within a QO level uses CSMA/CA protocol for getting the transmission opportunity. With equal beam width receive QO levels at the AP, we present an analytical model to compute the uplink throughput of the network in the CBAP, by closely following the 802.11ad MAC protocol specifications. We demonstrate that PHY layer MCS (modulation and coding scheme) dependent adaptive selection of QO levels can improve the throughput performance. In the second part of the paper, we consider that PCP/AP can have at most three radios, each tuned to operate in non-overlapping frequency bands as specified by 802.11ad PHY. We establish that such an arrangement can lead to concurrent transmissions in the network and improve the uplink throughput performance.  相似文献   

14.
This paper presents a MAC (medium access control) layer protocol GRAPO (optimized group randomly addressed polling) for wireless (local area) data network. GRAPO statistically optimizes the original version of GRAP proposed earlier [6, 7, 9] to deliver smooth converging and better throughput/delay performance. It is a good candidate of MAC protocol for wireless LANs and other wireless network applications to serve time bounded services.  相似文献   

15.
IEEE 802.15.4 as a standard for low rate wireless personal area networks (LR-WPAN) is an applicative choice for implementation of wireless sensor networks. Due to the advantages of this standard and its capabilities for more specification to wireless sensor networks, we were persuaded to resolve some of its proven weaknesses in such environments. The slotted CSMA/CA method utilized in beacon-enabled mode of 802.15.4 causes unacceptable level of energy consumption and throughput in conditions like high loads. To overcome these issues, we proposed an adaptable CSMA/TDMA hybrid channel access method by applying some modifications to the 802.15.4 standard. The energy and throughput improvement is achieved by dedicating a part of the contention access period to a time division medium access protocol (TDMA). To evaluate our proposed method in comparison with 802.15.4, we developed a simulation in OMNeT++. Analysis of the simulation results indicates general improvement of energy consumption and throughput. As a sensor network grows more populated or the load increases, the proposed method shows a better performance in comparison with IEEE 802.15.4 standard.  相似文献   

16.
Multi-hop wireless networks employing random access protocols have been shown to incur large discrepancies in the throughputs achieved by the flows sharing the network. Indeed, flow throughputs can span orders of magnitude from near starvation to many times greater than the mean. In this paper, we address the foundations of this disparity. We show that the fundamental cause is not merely differences in the number of contending neighbors, but a generic coordination problem of CSMA-based random access in a multi-hop environment. We develop a new analytical model that incorporates this lack of coordination, identifies dominating and starving flows and accurately predicts per-flow throughput in a large-scale network. We then propose metrics that quantify throughput imbalances due to the MAC protocol operation. Our model and metrics provide a deeper understanding of the behavior of CSMA protocols in arbitrary topologies and can aid the design of effective protocol solutions to the starvation problem.   相似文献   

17.
In this paper, a proposed new wireless protocol so-called wireless controller area network is introduced. WCAN is an adaptation of its wired cousin, controller area network protocol. The proposed WCAN uses token frame scheme in providing channel access to nodes in the system. This token frame method follows the example used in wireless token ring protocol which is a wireless network protocol that reduces the number of retransmissions as a result of collisions. This scheme based on CAN protocol allows nodes to share a common broadcast channel by taking turns in transmitting upon receiving the token frame that circulates around the network for a specified amount of time. The token frame allows nodes to access the network one at a time, giving ‘fair’ chance to all nodes instead of competing against one another. This method provides high throughput in a bounded latency environment. The proposed WCAN protocol has been developed and simulated by means of QualNet simulator. The performances of this proposed protocol are evaluated from the perspective of throughput, end-to-end delay and packet delivery ratio, and are compared against the IEEE 802.11 protocol. Simulation results show that the proposed WCAN outperforms IEEE 802.11 based protocol by 62.5 % in terms of throughput with increasing network size. Also, it shows an improvement of 6 % compared to IEEE 802.11 standard at a higher data interval rate.  相似文献   

18.
Well appreciated at the physical layer, user cooperation is introduced here as a diversity enabler for wireless random access (RA) at the medium access control sublayer. This is accomplished through a two-phase protocol in which active users start with a low power transmission attempting to reach nearby users and follow up with a high power transmission in cooperation with the users recruited in the first phase. We show that such a cooperative protocol yields a significant increase in throughput. Specifically, we prove that for networks with a large number of users, the throughput of a cooperative wireless RA network operating over Rayleigh-fading links approaches the throughput of an RA network operating over additive white Gaussian noise links-thus justifying the title of the paper. The message borne out of this result is that user cooperation offers a viable choice for migrating diversity benefits to the wireless RA regime, thus bridging the gap to wireline RA networks, without incurring a bandwidth or energy penalty  相似文献   

19.
In this paper, the directional carrier sense multiple access/collision avoidance (CSMA/CA) protocol in the immediate acknowledgement mode for IEEE 802.15.3c is analyzed under saturation environments. For the analysis, a sensing region and an exclusive region with a directional antenna are computed probabilistically and a Markov chain model in which the features of IEEE 802.15.3c and the effects of using directional antennas are incorporated is analyzed. An algorithm to find the maximal number of concurrently transmittable frames is proposed. The system throughput and the average transmission delay are obtained in closed forms. The numerical results show the impact of directional antennas on the CSMA/CA media access control (MAC) protocol. For instance, the throughput with a small beamwidth of antenna is more than ten times larger than that for an omnidirectional antenna. The overall analysis is verified by a simulation. The obtained results will be helpful in developing an MAC protocol for enhancing the performance of mmWave wireless personal area networks.  相似文献   

20.
Wireless LAN technology has been shown to he a revolutionary development during the last decade. Recently popularized IEEE 802.11a/g-based products can support up to 54 Mb/s physical layer rate and provide wireless access to the Internet. However, in order to deal robustly with the unreliable wireless nature, the 802.11 medium access control protocol has a relatively large overhead and hence, the throughput performance is much worse than the underlying physical layer rate. Moreover, along with many emerging applications and services over WLANs, such as voice over WLAN and audio/video streaming, the demand lor faster and higher- capacity WLANs has been growing recently. In this article, we propose a new medium access control protocol for the next-generation high-speed WLANs. The proposed medium access control, called multi-user polling controlled channel access, is composed of two components: multi-layer frame aggregation, which performs aggregation at both the medium access control and the physical layers; and multi-user polling, used to reduce the contention overhead and in turn, achieve higher network utilization. Multi-user polling controlled channel access is compared with the 802.11e-enhanced distributed channel access medium access control. Highly enhanced medium access control efficiency can be achieved by applying multi-user polling controlled channel access. We show the improved medium access control performance in terms of the aggregate throughput of non-QoS Hows with relevant QoS requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号