首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
赵秀华  陈福义  刘婧 《贵金属》2012,33(1):21-28
通过迦尔瓦尼置换反应在不同的Ag+溶液中制备出了铜基银枝晶,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和电化学工作站分别对样品的结构、微观形貌以及电化学性能进行了表征。结果表明,随着溶液中Ag+浓度和反应时间的增加,银的形貌从团簇状向树枝状转变,氧还原电催化性能也增强;在相同浓度Ag+溶液中,SO42-比NO3-更能促进枝晶的生长,但当阴离子是NO3-时比阴离子是SO42-时所制备的银枝晶的氧还原电催化性能更好;在10 mmol/L AgNO3溶液中,反应时间为1800 s时制备的银枝晶电极使H2O2的还原峰电流最大,在0.1 mol/L Na2SO4+5mmol/L H2O2溶液中,恒电位为-0.32 V时,其稳态电流密度可达2.83 mA/cm2。初步提出了银枝晶的生长机制和H2O2的氧还原催化机制。  相似文献   

2.
以低温合成法制备了Pt掺杂的W-Ru-Se纳米簇合物,并应用旋转圆盘电极线性电位扫描法测试其对氧还原反应的电催化性能,采用XRD、EDS、XPS表征结构及表面组成。结果表明,掺杂Pt后W-Ru-Se对氧还原反应活性明显提高,尤其以掺杂5%Pt(质量分数, 下同)的W-Ru-Se活性提高最为显著,在0.5 mol?L-1 H2SO4中Pt-W-Ru-Se (5%Pt)的氧还原起始电位为0.25 V,峰电流密度为310 mA?mg-1,是W-Ru-Se峰电流密度的2.2倍,活性接近于Pt/C。电解液中存在甲醇时,Pt-W-Ru-Se (5%Pt)的活性和抗甲醇性优于Pt/C  相似文献   

3.
杜重麟  廖登辉  余强 《表面技术》2012,(5):18-21,37
在不同温度和电流密度的条件下,制备不锈钢基PbO2电极,分析了电极的析氧曲线及析氧动力学参数,进而考察了温度和电流密度对PbO2电极节能性和电催化活性的影响。结果表明:温度为80℃,电流密度为30mA/cm2时,制备的电极成分稳定,重现性好,可有效降低槽电压,电催化活性良好;在小电流密度下的主要产物为β-PbO2,大电流密度下生成部分α-PbO2;与传统的铅基阳极材料相比,该PbO2电极节能性和催化活性均有较大程度的提高。  相似文献   

4.
锌电积用Pb-Ag阳极存在析氧过电位高、表面铅易电化学氧化溶解,造成阴极电锌品质低等突出问题,如何减少阳极的溶铅污染并提升其催化析氧活性、降低反应能耗,成为亟待解决的难题。本文在Pb-Ag阳极表面电沉积一层均匀、致密的MnO2薄膜,采用SEM、XRD和ICP等对MnO2催化层的表面微观形貌、晶体结构和溶液含铅量进行分析;采用CV、LSV、EIS和Tafel等对Pb-Ag/MnO2阳极的析氧催化活性和耐腐蚀性能进行分析。结果表明:在MnSO4-H2SO4溶液中,当循环速率为200 mL/min、温度为80℃时,以4 mA/cm2电沉积120 min制备的Pb-Ag/MnO2镀膜电极具有最佳的催化析氧和耐蚀性能;PbAg阳极经优化镀膜后,50 mA/cm2时其析氧过电位由936 mV降低为648 mV,腐蚀电流密度由7.03μA/cm2降低至0.66μA/cm2<...  相似文献   

5.
以NiCl2和Se粉为原料,采用溶剂热法合成了NiSe2化合物。利用SEM、XRD技术对化合物的微观形貌和相结构进行了表征,化合物由立方结构的NiSe2晶粒组成,呈现出类似花椰菜的表面形貌。利用旋转圆盘电极研究了NiSe2化合物对氧还原反应的电催化性能。在0.5 mol/L H2SO4电解液中,NiSe2化合物对氧还原反应呈现明显的电催化活性,开路电位为0.80 V(vs.NHE)。在0.63~0.77 V(vs.NHE)电位范围内,测定的交换电流密度为1.35×10-5 mA/cm2。根据Koutecky-Levich方程计算出每个氧分子还原转移电子数约为3.8。  相似文献   

6.
采用氯化物溶液在430不锈钢表面电沉积Co-Mn合金,重点研究了镀液pH值和电流密度对镀层微观结构及成分的影响。结果表明:pH值为2.5~6.5、电流密度为125~225mA/cm2时,镀层中的Mn含量随着pH值和电流密度的增大而增加;电流密度为125和175mA/cm2时,pH值是决定合金成分的主要因素,电流密度达到225mA/cm2时电流密度是影响合金成分的主要因素;电镀Co-Mn合金的优化工艺参数为pH值为4.5、电流密度为125mA/cm2,此时镀层质量良好,Mn含量可达20%(原子分数)以上;通过除氢处理及在800℃空气中的氧化处理,合金镀层转变为连续、与基体结合良好的MnCo2O4尖晶石涂层。  相似文献   

7.
目的 提高Fe电极的催化析氢性能。方法 较低温度条件下,在Fe基体表面电沉积一层非晶态Ni-Fe-P镀层,探究沉积电流密度、去合金时间等参数对Ni-Fe-P/Fe电极在碱性电解质中的电催化析氢反应的影响。通过扫描电镜、能谱、X射线衍射对镀层的形貌、元素分布、物相进行分析。在碱性溶液中,利用电化学工作站对电极进行一系列性能测试。结果 在沉积温度为10 ℃的条件下,于Fe电极表面成功制备出了致密且元素分布均匀的Ni-Fe-P非晶合金镀层。获得的Ni-Fe-P/Fe电极电催化性能均优于Fe电极,其中电流密度30 mA/cm2条件下制备的Ni-Fe-P/Fe电极在析氢电流密度为10 mA/cm2时的过电位为174.2 mV,比Fe电极低约466.2 mV。在相同条件下制备的Ni-Fe-P/Fe电极,经240 s去合金化处理,电极过电位仅为121.6 mV,比Fe电极低约518.8 mV。结论 电沉积的Ni-Fe-P非晶合金镀层可以显著提高Fe电极的析氢性能。随着沉积电流密度的增加,Ni-Fe-P/Fe电极的析氢过电位减小,双电层电容和电化学工作表面积增大。对镀层进行适当的去合金化处理,形成的三维多孔结构可以减小电极的电荷转移电阻,有效降低电极的析氢过电位。  相似文献   

8.
尹路  徐大可  杨春光  席通  李中  赵颖  杨柯 《表面技术》2019,48(7):316-323
目的 通过添加铜、银元素赋予2205双相不锈钢协同抗菌效果,以提高材料的抗菌性能和耐微生物腐蚀能力。方法 采用金相显微镜(OM)和扫描电镜(SEM)研究铜、银添加对材料显微组织变化和两相比例的影响,使用能谱(EDS)分析元素分布。采用电化学测试,包括动电位极化曲线(PD)、开路电位(OCP)、线性极化电阻(LPR)和交流阻抗谱(EIS),表征添加铜、银后材料耐蚀性能的改变和在硫酸盐还原菌(SRB)体系中耐微生物腐蚀的能力。采用莫特肖特基测试(MS)表征表面钝化膜缺陷密度的变化。使用扫描电镜观察浸泡试样表面生物被膜和腐蚀产物,并采用EDS分析腐蚀产物主要成分。通过共聚焦显微镜(CLSM)观察活死染色后表面生物被膜内细菌的生长情况,分析含铜、银材料的协同抗菌性能。结果 添加铜元素会使2205双相不锈钢中奥氏体含量增多,银元素主要以银富集相分布于基体材料中。电化学测试显示,2205试样的腐蚀电流密度和维钝电流密度分别为10.30 mA/cm2和1.19 μA/cm2,而2205-Cu和2205-Cu-Ag的自腐蚀电流密度分别为13.73 mA/cm2和28.85 mA/cm2,维钝电流密度分别为1.54 μA/cm2和2.31 μA/cm2,添加铜和银元素都会导致自腐蚀电流密度和维钝电流密度上升。此外,铜银元素会使钝化膜掺杂浓度上升,2205试样的钝化膜掺杂浓度为2.81×1020 cm-3,而2205-Cu和2205-Cu-Ag钝化膜掺杂浓度分别为4.46×1020 cm-3和4.97×1020 cm-3。由于协同抗菌效应,在硫酸盐还原菌参与腐蚀的体系中,2205-Cu-Ag试样的耐蚀性能远好于2205-Cu和2205试样,在第14天时,2205、2205-Cu和2205-Cu-Ag的极化电阻值分别为37.27、41.51、72.90 kΩ?cm2。通过活死染色和扫描电镜图片可看出,2205-Cu-Ag表面的腐蚀产物较少,生物被膜稀疏且死亡细菌多于2205和2205-Cu试样。结论 铜、银的添加会改变2205双相不锈钢的两相比例,降低耐蚀性,并使钝化膜致密性降低。但同时含铜、银的材料具有明显的协同抗菌效果,能够有效抑制金属表面生物被膜的附着,显著提升了材料耐硫酸盐还原菌导致的微生物腐蚀性能。  相似文献   

9.
通过X射线衍射、X射线光电子能谱、透射电镜、扫描电镜以及能谱分析和电化学方法考察制备路线对氧还原反应(ORR)电催化剂Ag-MnOx/C物理性能及其催化活性的影响。结果表明:通过两步法制得的催化剂(Ag-MnOx/C-2)的表面Ag和Mn含量比一步法制备样品(Ag-MnOx/C-1)的高,这使得Ag-MnOx/C-2具有更高的催化活性。Ag-MnOx/C-2表面ORR的电子转移数高于Ag-MnOx/C-1的电子转移数,且在-0.60 V(相对于Hg/HgO)处的比质量动力学电流为46 mA/μg,为Ag/C的23倍。以Ag-MnOx/C-2为阴极催化剂组装的锌-空气电池的最高能量密度高达117 m W/cm2。  相似文献   

10.
在斯堪的纳维亚半岛,丰富的水力电通过波罗的海海底电缆以高压直流电方式输送到欧洲大陆。当电缆中的一根因故切断时,电流可通过预先安装在两岸的电极来输送。目前还没有实用的电解海水的析氧电极。在所检验过的各种材料的电极中,只有沉积MnO2的阳极具有高的析氧效率。最近,研究者通过向阳极中添加钼或钨成功地提高了MnO2的析氧效率,在30℃的0.5M NaCl溶液中,电流密度为1000A/m2时,析氧效率超过99.9%。添加钼能有效地提高起始析氧效率,但含钨阳极对析氧反应更活泼。日本学者研究了同时添加钼和钨对阳极析氧效率、活泼性和寿命的…  相似文献   

11.
通过改进的置换反应,以三维网状结构泡沫镍为基底,制备了新型多孔Ag/Ni复合泡沫金属材料(Ag@Ni泡沫金属)。X射线衍射(XRD)、扫描电子显微镜(SEM)和X射线能谱(EDS)表明,泡沫镍基底上生成的金属Ag颗粒呈枝晶状且分布均匀。将其作为集流体首次应用于锂空气一次电池正极,通过线性伏安扫描(LSV)、电化学阻抗(EIS)和充放电测试研究了电极的电化学性能,结果表明,这种Ag@Ni泡沫金属作为锂空气一次电池的氧气极集流体,明显提高了还原反应的催化活性,改善了电化学反应性能,电流密度0.1 mA/cm2时,放电电压平台从2.66升高到2.73 V,容量也由2000 mAh/g增大到2750 mAh/g,且大电流密度下改善更为明显。  相似文献   

12.
目的研究硼掺杂金刚石(BDD)电极电化学氧化降解活性橙X-GN偶氮染料废水。方法采用热丝气相沉积法(HFCVD)制备铌基BDD电极,采用SEM观察BDD薄膜的表面形貌,用Raman检测BDD薄膜的成分,用电化学工作站测试BDD电极的电化学性能。选择活性橙X-GN染料废水作为降解对象,分别研究电流密度(20、50、100、150 m A/cm~2)、电解质浓度(0.025、0.05、0.1 mol/L)和溶液初始pH(3.78、6.74、10.92)等不同工艺参数对降解效率的影响,并采用紫外可见光分光光度计进行测试表征,使用能耗和总有机碳量表征降解效果。结果 BDD电极具有很好的电催化性能,其电势窗口为3.33 V,析氧电位达到2.45 V,远高于大多数有机物的氧化电位,电极表面反应受扩散步骤控制。结合活性橙X-GN染料溶液降解效果,得出100 mg/L活性橙X-GN溶液的最佳降解工艺参数为:电流密度100 m A/cm~2、电解质浓度0.05mol/L、溶液初始pH值3.78。采用最佳工艺参数处理5 h后,色度移除率达到99%,能耗为65.4 k W·h/m~3,TOC去除率达到56.95%。结论 BDD电极可以有效地降解活性橙X-GN染料废水。  相似文献   

13.
1 IntroductionThestructureandelectrochemicalpropertiesofnickelhydroxidehavebeenstudiedextensivelyduetoitsimportanceasactivematerialsinnickelbatterysys tems[1 ].Afundamentalunderstandingoftheeffectsofmetallicadditivesandimpuri tiesonthenickelhydroxideelec…  相似文献   

14.
1Introduction A principal focus of modern research in electrocatalysis is to discover electrode materials that exhibit excellent electrochemical stability and show interesting activity towards typical electrochemical reaction[1?10].It is desirable that th…  相似文献   

15.
铝合金双极板磁控溅射Ag掺杂类石墨薄膜表面改性研究   总被引:3,自引:3,他引:0  
目的研究在铝合金样品表面制备Ag掺杂类石墨薄膜对样品导电、耐蚀性能的影响。方法采用磁控溅射离子镀技术,在6061铝合金表面沉积了Ag掺杂类石墨层,对样品微观形貌、接触电阻和电化学腐蚀性能进行了观察测试。结果类石墨薄膜厚度随着Ag靶电流的提高而增大。与铝合金基体相比,镀膜样品的接触电阻降低了2个数量级,腐蚀电流密度降低了2~3个数量级。Ag靶材电流为0.04 A时,镀膜样品接触电阻(1.5 MPa压强)为1.93 m?·cm~2,腐蚀电流密度低至10~(-5.5) A/cm~2数量级。结论沉积有Ag掺杂类石墨薄膜的样品达到了极低的表面接触电阻与较低的腐蚀电流密度,使镀膜后的铝合金样品具有优异的导电性能与较好的耐腐蚀性能。  相似文献   

16.
为了改善AZ91镁合金的表面性能,在含0-15g/LSiC纳米颗粒的改进的瓦特槽中,采用脉冲电沉积得到不同SiC含量的Ni-SiC纳米复合涂层。采用扫描电子显微镜(SEM)研究涂层的形貌,采用能谱仪(EDs)测试涂层的SiC含量。从15g/LSiC槽中电沉积得到的样品,其涂层的显微硬度提高了600%。采用动电位极化法研究包覆AZ91镁合金的腐蚀行为。结果表明,样品的耐腐蚀性能明显提高,即腐蚀电流密度从未包覆样品的0.13mA/cm2降低到槽中含15∥LSiC电沉积包覆样品的1.74x101mA/cm2,腐蚀电位从未包覆样品的-1.6V增加到槽中电沉积包覆样品的-0.31V。使用盘销摩擦测试仪评估了包覆和未包覆样品的耐磨性能,包覆样品的磨损量比未包覆的小8倍。  相似文献   

17.
In this work, silver (Ag) nanoparticles were deposited on graphene sheets by chemical reduction and Ag-doped graphene (Ag-GR)/polypyrrole (PPy) nanocomposites were prepared by oxidation polymerization. The effect of the Ag-GR incorporation on the electrochemical properties of the PPy nanocomposites was investigated. It was found that highly dispersed Ag nanoparticles (2–5 nm) could be deposited onto the GR and that Ag-GR was successfully coated by PPy. From the cyclic voltammograms, Ag-GR showed higher electrocatalytic activity than that of pristine GR. Furthermore, the Ag-GR/PPy showed remarkably increased current density, quicker response, and better specific capacitance compared with GR/PPy. This indicates that, due to their high electrocatalytic activity, the Ag nanoparticles deposited onto the GR serve as an efficiency catalyst to improve electrochemical performance of the GR/PPy and that they resulted in the increase of the charge transfer between GR and PPy by bridge effect.  相似文献   

18.
Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPd81Cu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at ?0.5 V or 66.4 mA/cm2 at ?0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPd81Cu19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at ?0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号