首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
聚合型半导体材料g-C3N4因其优异的物理性能和光电性能成为当今研究的热门材料。本文从结构分析和理论计算角度讨论了g-C3N4能够作为无金属催化剂的原因,综述了介孔g-C3N4、无机元素掺杂g-C3N4、金属负载g-C3N4、g-C3N4/金属氧化物复合物和有机改性g-C3N4等不同改性g-C3N4的制备和性质,着重分析了他们催化光解水析氢反应的机理、影响因素及研究进展,并阐述了今后的研究方向。  相似文献   

2.
采用半封闭一步热解方法,以三聚氰胺为前驱物制备g-C3N4,然后以圆筒状硅藻土(DE)为载体,合成DE/g-C3N4复合材料。并选取天然鳞片石墨为基本原料,运用Hummers法合成了氧化石墨烯(GO),在一定量的DE/g-C3N4粉末中加入不同质量分数的GO,得到DE/g-C3N4/GO三元复合光催化材料。通过SEM、BET、EDS、XRD、FT-IR对样品的晶体结构、形貌等进行表征,研究复合材料对罗丹明B溶液的光催化降解性能。结果表明,当GO的烯掺量为5%时,DE/g-C3N4/GO在可见光下,120min时,对RhB的降解率为93.74%,分别比DE/g-C3N4和g-C3N4提高了15.05%和31.03%。  相似文献   

3.
高温缩聚法合成g-C3N4和水热法制备的BiOCl,在室温下通过简单的物理搅拌使片层状g-C3N4附着在菊花状的BiOCl上,控制g-C3N4的质量分数分别为5%、10%、15%、20%和25%,合成g-C3N4/BiOCl复合光催化剂。通过扫描电镜(SEM)、EDS能谱和BET比表面表征方法,揭示了g-C3N4/BiOCl复合光催化剂的微观结构;紫外-可见光(UV-Vis)结果显示g-C3N4/BiOCl可将光吸收范围延伸到可见光范围,其中BiOCl/CN-10具有更窄的禁带宽度;荧光光谱(PL)证实BiOCl/CN-10抑制光生载流子的复合能力最强;同时对g-C3N4/BiOCl降解染料废水罗丹明B(RhB)、亚甲基蓝(MB)和甲基橙(MO)的光催化能力进行了评估,结果表明g-C...  相似文献   

4.
为了解决日益严重的环境污染和能源短缺等问题,基于半导体的光催化技术利用太阳能为环境修复和能源储存提供了一种“绿色”可持续的方案。首先介绍了g-C3N4的优点和局限性,以及S型半导体的优势与不足,接着介绍了g-C3N4基S型异质结的电子结构和光催化性质,综述了基于不同类型g-C3N4的S型异质结光催化材料构建和光催化性能的提升策略,并梳理了其部分应用。最后,综述了基于g-C3N4的S型异质结面临的挑战和未来发展趋势,有望为g-C3N4基S型异质结光催化材料的开发和实际应用提供重要的参考。  相似文献   

5.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。  相似文献   

6.
金属-有机框架材料(MOFs)和石墨相氮化碳(g-C3N4)在产氢、CO2还原、Cr还原以及有机污染物降解方面表现出优异的光催化性能。将MOFs和g-C3N4结合构建二元或三元异质结,可以克服两种材料各自的缺点,进一步提高其材料在可见光或太阳光照射下的光催化性能。重点介绍了几种典型MOFs/g-C3N4复合材料的制备方法及其光催化性能,并展望了该研究领域发展前景和面临的挑战。  相似文献   

7.
将自制层状石墨相氮化碳(g-C3N4)和WO3纳米片均匀混合,经煅烧制备WO3/g-C3N4复合半导体。利用XRD、SEM、TEM、UV-Vis DRS和PL对其进行表征。结果表明,g-C3N4呈现类石墨烯状片层结构,WO3为纳米片状结构,且分散在g-C3N4表面;与WO3复合后,UV-Vis吸收边发生了红移,拓宽了g-C3N4对可见光的响应。以罗丹明B(RhB)为模拟污染物,考察WO3/g-C3N4的光催化降解性能。WO3/g-C3N4质量比为1∶5时,表现出最佳的光催化活性,可见光照60 min后,RhB降解率可达到94.9%。光催化剂具有良好的稳定性,重复使用6次后,RhB的降解率依然达到88.9%。光催化机制研究表明,超氧自由基(·O2?)是光催化降解RhB的主要活性物种。   相似文献   

8.
通过溶剂蒸发和二次高温煅烧石墨相碳化氮(g-C3N4)纳米片和WS2纳米片混合物构建WS2/g-C3N4异质结,该异质结保留g-C3N4和WS2主体结构的同时,在界面处形成化学键,确保该异质结的化学稳定性和热稳定性。光催化分解水制氢实验表明,WS2纳米片含量为3wt%时光催化制氢速率高达68.62 μmol/h,分别是g-C3N4纳米片和WS2纳米片的2.53倍和15.29倍,表明异质结的构建可大幅提升g-C3N4的光催化性能,循环实验表明该异质结在5次循环实验后光催化性能没有明显下降,表明该异质结的稳定性较好。光电性能测试表明异质结的构建不仅提高激发电子的转移效率,同时抑制激发电子空穴的复合率,大幅提升激发电子的利用效率,致使光催化分解水制氢速率较g-C3N4纳米片和WS2纳米片大幅提升。   相似文献   

9.
光催化技术是一种极具应用前景的环境修复技术,开发高效、稳定、具有可见光响应的光催化剂是其研究的重点之一。本文采用常压溶剂热法,以1, 3, 5-三(4-氨基苯基)苯(TAPB)和2, 5-二甲氧基苯-1, 4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FTIR、BET、TGA、UV-Vis DRS、电流-时间(i-t)和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(Ⅵ)为模型污染物探究了不同gC3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明:在pH=2条件下,g-C3N4/POP-2表现出了最佳...  相似文献   

10.
通过水热法在导电凹凸棒石(C-ATP)表面原位生长TiO2纳米棒制得毛虫状结构的TiO2/C-ATP复合材料,然后以TiO2/C-ATP为载体,在TiO2纳米棒表面进一步复合g-C3N4量子点(CNQD)成功制备了多级结构的CNQD-TiO2/C-ATP异质结光催化材料。利用XRD、FTIR、SEM/TEM、紫外-可见吸收光谱(UV-Vis-DRS)、荧光发射光谱(PL)、BET比表面积分析仪和光电化学等技术对样品进行表征。在可见光照射下,考察了样品对盐酸四环素(TC)的光催化降解能力。结果表明:与TiO2/C-ATP和CNQD相比,CNQD-TiO2/C-ATP大幅提高了可见光响应、吸收能力和光生电子-空穴对的分离效率。当光照时间为120 min时,CNQD-TiO2/C-ATP对TC去除率可达88%。   相似文献   

11.
以石墨相氮化碳(g-C3N4)和六水合硝酸钴为原料制备Co@CNT复合电磁波吸收剂,调节Co元素含量以提高其电磁波吸收性能。采用X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱、扫描电镜(SEM)、能谱分析(EDS)和透射电镜(TEM)等手段表征其微结构和物相组成,使用矢量网络分析仪测量复合物电磁参数并进行Matlab模拟得到反射损耗图。结果表明,Co@CNT-1与石蜡质量比为1:3的材料,其吸波性能最优,厚度为4.1 mm时对电磁波的吸收最强,最小反射损耗(RLmin)为-45.5 dB;厚度仅为1.5 mm的材料,有效吸收带宽(RL<-10 dB)最大为4.42 GHz。  相似文献   

12.
Tungsten‐based catalysts are promising candidates to generate hydrogen effectively. In this work, a single‐W‐atom catalyst supported on metal–organic framework (MOF)‐derived N‐doped carbon (W‐SAC) for efficient electrochemical hydrogen evolution reaction (HER), with high activity and excellent stability is reported. High‐angle annular dark‐field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption fine structure (XAFS) spectroscopy analysis indicate the atomic dispersion of the W species, and reveal that the W1N1C3 moiety may be the favored local structure for the W species. The W‐SAC exhibits a low overpotential of 85 mV at a current density of 10 mA cm?2 and a small Tafel slope of 53 mV dec?1, in 0.1 m KOH solution. The HER activity of the W‐SAC is almost equal to that of commercial Pt/C. Density functional theory (DFT) calculation suggests that the unique structure of the W1N1C3 moiety plays an important role in enhancing the HER performance. This work gives new insights into the investigation of efficient and practical W‐based HER catalysts.  相似文献   

13.
To develop a non-precious highly efficient cocatalyst to replace Pt on graphitic carbon nitride (g-C3N4) for solar H2 production is great significant, but still remains a huge challenge. The emerging single-atom catalyst presents a promising strategy for developing highly efficient non-precious cocatalyst owing to its unique adjustability of local coordination environment and electronic structure. Herein, this work presents a facile approach to achieve single Ni sites (Ni1-N2S) with unique local coordination structure featuring one Ni atom coordinated with two nitrogen atoms and one sulfur atom, confirmed by high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and density functional theory calculation. Thanks to the unique electron structure of Ni1-N2S sites, the 1095 µmol g−1 h−1 of high H2 evolution rate with 4.1% of apparent quantum yield at 420 nm are achieved. This work paves a pathway for designing a highly efficient non-precious transition metal cocatalyst for photocatalytic H2 evolution.  相似文献   

14.
15.
以α-Si3N4为原料, Y2O3为烧结助剂, 在三种不同的氮气压力(0.12、0.32和0.52 MPa)下烧结制备了多孔氮化硅陶瓷。研究了氮气压力对氮化硅的烧结行为、显微组织和力学性能的影响, 分别通过SEM观察显微组织并统计晶粒的长径比, 通过XRD对物相进行分析, 并对烧结试样进行三点弯曲强度测试。随着氮气压力的提高, 多孔陶瓷的线收缩率降低、气孔率提高, 这是由于低熔点的液相中N含量随氮气压力的提升而增加, 导致了液相粘度提高, 抑制陶瓷致密化。随着氮气压力的提高, 组织中的棒状β-Si3N4生长良好, 晶粒长径比增大, 其原因是高的液相粘度抑制了β-Si3N4形核, 有利于β-Si3N4生长。由于β-Si3N4棒状晶的作用, 陶瓷弯曲强度随氮气压力的升高得到改善, 但是气孔率的升高降低陶瓷的强度。在0.52 MPa的氮气压力下烧结的多孔陶瓷气孔率达58%, 弯曲强度为140 MPa。  相似文献   

16.
Ammonia is a key chemical feedstock worldwide. Compared with the well-known Haber–Bosch method, electrocatalytic nitrogen reduction reaction (ENRR) can eventually consume less energy and have less CO2 emission. In this study, a plasma-enhanced chemical vapor deposition method is used to anchor transition metal element onto 2D conductive material. Among all attempts, Ru single-atom and Ru-cluster-embedded perovskite oxide are discovered with promising electrocatalysis performance for ENRR (NH3 yield rate of up to 137.5 ± 5.8 µg h−1 mgcat−1 and Faradaic efficiency of unexpected 56.9 ± 4.1%), reaching the top record of Ru-based catalysts reported so far. In situ experiments and density functional theory calculations confirm that the existence of Ru clusters can regulate the electronic structure of Ru single atoms and decrease the energy barrier of the first hydrogenation step (*NN to *NNH). Anchoring Ru onto various 2D perovskite oxides (LaMO-Ru, MCr, Mn, Co, or Ni) also show boosted ENRR performance. Not only this study provides an unique strategy toward transition-metal-anchored new 2D conductive materials, but also paves the way for fundamental understanding the correlation between cluster-involved single-atom sites and catalytic performance.  相似文献   

17.
Artificial photosynthesis for solar water splitting and CO2 reduction to produce hydrogen and hydrocarbon fuels has been considered as one of the most promising ways to solve increasingly serious energy and environmental problems. As a well‐documented metal‐free semiconductor, polymeric carbon nitride (PCN) has been widely used and intensively investigated for photocatalytic water splitting and CO2 reduction, owing to its physicochemical stability, visible‐light response, and facile synthesis. However, PCN as a photocatalyst still suffers from the fast recombination of electron‐hole pairs and poor water redox reaction kinetics, greatly restricting its activity for artificial photosynthesis. Among the various modification approaches developed so far, decorating PCN with metals in different existences of nanoparticles, single atoms and molecular complexes, has been evidently very effective to overcome these limitations to improve photocatalytic performances. In this Review article, a systematic introduction to the state‐of‐the‐art metal/PCN photocatalyst systems is given, with metals in versatility of nanoparticles, single atoms, and molecular complexes. Then, the recent processes of the metal/PCN photocatalyst systems in the applications of artificial photosynthesis, e.g., water splitting and CO2 reduction, are reviewed. Finally, the remaining challenges and opportunities for the development of high efficiency metal/PCN photocatalyst systems are presented and prospected.  相似文献   

18.
Heteroatom‐doped Fe‐NC catalyst has emerged as one of the most promising candidates to replace noble metal‐based catalysts for highly efficient oxygen reduction reaction (ORR). However, delicate controls over their structure parameters to optimize the catalytic efficiency and molecular‐level understandings of the catalytic mechanism are still challenging. Herein, a novel pyrrole–thiophene copolymer pyrolysis strategy to synthesize Fe‐isolated single atoms on sulfur and nitrogen‐codoped carbon (Fe‐ISA/SNC) with controllable S, N doping is rationally designed. The catalytic efficiency of Fe‐ISA/SNC shows a volcano‐type curve with the increase of sulfur doping. The optimized Fe‐ISA/SNC exhibits a half‐wave potential of 0.896 V (vs reversible hydrogen electrode (RHE)), which is more positive than those of Fe‐isolated single atoms on nitrogen codoped carbon (Fe‐ISA/NC, 0.839 V), commercial Pt/C (0.841 V), and most reported nonprecious metal catalysts. Fe‐ISA/SNC is methanol tolerable and shows negligible activity decay in alkaline condition during 15 000 voltage cycles. X‐ray absorption fine structure analysis and density functional theory calculations reveal that the incorporated sulfur engineers the charges on N atoms surrounding the Fe reactive center. The enriched charge facilitates the rate‐limiting reductive release of OH* and therefore improved the overall ORR efficiency.  相似文献   

19.
Hard carbon is the most promising anode for potassium-ion batteries (PIBs) due to its low cost and abundance, but its limited storage capacity remains a major challenge. Herein, edge coordination of metal single atoms is proved to be an effective strategy for promoting potassium storage in hard carbon for the first time, taking B, N co-doped hard carbon nanotubes anchored by edge Ni-N4-B atomic sites (Ni@BNHC) as an example. It is revealed that edge Ni-N4-B can provide active sites for interlayer adsorption of K+ and that Ni atoms can facilitate the reversibility of K+ storage on N and B atoms. Furthermore, an unprecedentedly reversible K+ storage capacity of 694 mAh g−1 at 0.05 A g−1 is realized by introducing commercial carbon nanotubes. This work provides a new perspective for the application of single-atom engineering and the design of high-performance carbon anodes for PIBs.  相似文献   

20.
The electrochemical reduction of N2 into NH3 production under ambient conditions represents an attractive prospect for the fixation of N2. However, this process suffers from low yield rate of NH3 over reported electrocatalysts. In this work, a record‐high activity for N2 electrochemical reduction over Ru single atoms distributed on nitrogen‐doped carbon (Ru SAs/N‐C) is reported. At ?0.2 V versus reversible hydrogen electrode, Ru SAs/N‐C achieves a Faradaic efficiency of 29.6% for NH3 production with partial current density of ?0.13 mA cm?2. Notably, the yield rate of Ru SAs/N‐C reaches 120.9 , which is one order of magnitude higher than the highest value ever reported. This work not only develops a superior electrocatalyst for NH3 production, but also provides a guideline for the rational design of highly active and robust single‐atom catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号