首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triglyceride (TG) enrichment of high density lipoproteins (HDL) in hypertriglyceridemic states renders the particles vulnerable to lipolysis, which reduces their size. In the present study we modified the size and composition of HDL in vivo in hypertriglyceridemic humans by administering a bolus of intravenous heparin, and tested the subsequent clearance of the isolated HDL particles in rabbits and rats. HDL was isolated by ultracentrifugation from 21 moderately hypertriglyceridemic humans, 5 h after ingestion of a high fat meal and then 15 min after an intravenous heparin bolus (60 U/kg). Postprandial large TG-rich preheparin HDL and small, TG-poor postheparin HDL were labeled with either 125I or 131I. The clearance of apoA-I associated with each HDL tracer was determined by injecting the tracers 1) simultaneously (n = 13) and 2) sequentially (n = 8) into male New Zealand White rabbits, an hepatic lipase-deficient animal, and 3) by injecting the tracers simultaneously into male Sprague-Dawley rats (n = 8), an animal that has hepatic lipase. Die-away curves of each radiolabeled tracer were analyzed using a two-pool model that assumes the existence of an intravascular pool in dynamic equilibrium with an extravascular pool. In the rabbit studies, the fractional catabolic rate (FCR) of small, postheparin TG-poor HDL was greater than the FCR of the larger TG-rich HDL (11% greater in the simultaneous study, P < 0.001, and 45% greater in the sequential study, P < 0.001). Opposite results were observed in rats as large TG-rich preheparin particles showed a greater FCR (1.8-fold) than smaller TG-poor postheparin HDL (P < 0.05). These data suggest that although size and composition of HDL can influence its catabolism, the effect is not always in the same direction and depends on other factors present in vivo.  相似文献   

2.
Diabetes mellitus has been shown to be associated with lipid abnormalities. Prior studies have indicated that women with diabetes have a risk of coronary heart disease similar to that of men. We compared lipid parameters in diabetic and nondiabetic participants in cycle 3 of the Framingham Offspring Study. Values for plasma total cholesterol (TC), triglyceride, lipoprotein, cholesterol, apolipoprotein (apo) A1, B, apo and lipoprotein(a) [Lp(a)] and low-density lipoprotein (LDL) particle size were analyzed in 174 diabetic and 3,757 nondiabetic subjects. Data from a total of 2,025 men and 2,042 women participating in the third examination (1983 to 1987) of the Framingham Offspring Study were subjected to statistical analysis. Male and female diabetics showed lower high-density lipoprotein (HDL) cholesterol, higher triglycerides, higher very-low-density lipoprotein (VLDL) cholesterol, lower apo A1, and higher LDL particle scores, indicating smaller size, than nondiabetics. Female diabetics also showed significantly higher TC and apo B values than nondiabetics. The results remained statistically significant after controlling for obesity and menopausal status. The presence of small dense LDL particles (pattern B) was highly associated with diabetes and hypertriglyceridemia in both sexes, and the relative odds for pattern B remained significant in women but not in men after adjustment for age and hypertriglyceridemia. No differences in apo E isoform distribution were found for diabetics and nondiabetics. Diabetes was not associated with elevated LDL cholesterol levels. In conclusion, diabetics have lower HDL cholesterol and higher triglyceride levels and are more likely to have small dense LDL particles. Diabetes is not a secondary cause of elevated LDL cholesterol. Lipid screening of diabetics should include full quantification of lipids for proper assessment of potential atherosclerotic risk.  相似文献   

3.
Although metabolic disturbances are often observed in obese patients, increased accumulation of visceral adipose tissue (AT) has been shown to be more closely associated with high fasting triglyceride (TG) and insulin levels as well as with low HDL cholesterol concentrations than with excess body fatness per se. Interestingly, the fasting concentration of plasma TGs has been shown to be an important determinant of the magnitude and duration of the postprandial TG response. Yet little is known about the respective contributions of obesity versus excess visceral AT to the variation in postprandial TG clearance. In the present study, we examined potential differences in postprandial triglyceride-rich lipoprotein (TRL) responses in subjects characterized by high versus low levels of visceral AT. In a sample of 43 men (mean age: 41.3 +/- 9.6 years), we found that both excess body fat and visceral obesity were associated with increased postprandial TG responses in total TRL (r = 0.33-0.45). We also found a strong relationship between fasting plasma TG levels and postprandial total TRL-TG concentrations (r = 0.79, P < 0.0001). When matched for total body fat mass, individuals with high levels of visceral AT (> or =130 cm2; n = 10) as assessed by computed tomography were characterized by increased medium- and small-TRL-TG responses (P < 0.05) compared with subjects with low visceral AT accumulation (<130 cm2; n = 10). Moreover, this elevated response of small-TRL triglycerides noted in men with high levels of visceral AT was not accompanied by a concomitant increased retinyl palmitate response in this TRL fraction, suggesting that visceral obesity in men is accompanied by higher postprandial VLDL production than is found in obese men with lower levels of visceral AT. Increased postprandial insulin and free fatty acid (FFA) responses were also noted in men with high levels of visceral AT. Finally, postheparin plasma lipoprotein lipase activity was negatively correlated with the total-TRL-TG response in a subsample of 32 individuals (r = -0.37, P < 0.05). The results of the present study suggest that visceral obesity is associated with an impaired postprandial TG clearance. Furthermore, the exaggerated postprandial FFA response observed in subjects with high visceral AT suggests that visceral obesity may contribute to fasting and postprandial hypertriglyceridemia by altering FFA metabolism in the postprandial state.  相似文献   

4.
The common C-480T transition in the hepatic lipase (HL) promoter has been shown to be associated with lower HL activity and increased high density lipoprotein (HDL) cholesterol. We examined the frequency and lipid associations of this HL polymorphism in 385 healthy, young (18- to 28-year-old) men whose fathers had had a premature myocardial infarction (designated cases) and 405 age-matched controls. These individuals were participants in the European Atherosclerosis Research Study II postprandial trial, who had been recruited from 11 European countries in 4 regions (the Baltic; United Kingdom; and central and southern Europe). Overall, the frequency of the T allele was 0.207 in controls and 0.244 in cases (P=0.08). The T allele was associated with higher fasting plasma total cholesterol (P<0.01), triglycerides (P<0.01), and HDL cholesterol (P<0.01). The strongest association was found with apolipoprotein (apo) A-I concentration, which was 10% higher in individuals homozygous for the T allele compared with those homozygous for the C allele (P<0.001). This polymorphism had no effect on the rise in plasma triglyceride levels after a fatty meal. However, before and after the fat load was ingested, levels of particles containing both apoC-III and apoB (LpC-III:B) were higher in carriers of the T allele, with homozygotes having 23% and 27% higher levels preprandially and postprandially, respectively, than those homozygous for the C allele (P<0.05). Thus, our results demonstrate that the C-480T polymorphism in the HL promoter is associated with alterations in plasma lipids and lipoproteins and the accumulation of atherogenic LpC-III:B particles.  相似文献   

5.
The impact of apo E polymorphism on interindividual variation in plasma lipid, lipoprotein concentrations, and LDL subfraction profiles was studied in 201 well-defined patients (88 men and 103 women) with familial combined hyperlipidemia (FCH). When corrected for the concomitant influences of age, gender and obesity, the allelic variation in the apo E gene was shown to explain a statistically significant portion of the variability in lipid and (apo)lipoprotein concentrations. Carriers of the apo epsilon 2 allele exhibited a substantially higher plasma triglyceride concentration and a lower low density lipoprotein (LDL) cholesterol level, while subjects with the apo epsilon 4 allele had significant higher total plasma cholesterol and LDL cholesterol levels. In line with this observation, our FCH population was characterized by an over-representation of the apo E4 allele as compared with a Dutch standard population (chi 2 = 55.2, P < 0.0001). The contribution of apo E polymorphism to trait variability was different between sexes for plasma triglyceride, VLDL cholesterol, VLDL triglycerides, and high density lipoprotein (HDL) cholesterol levels. Apo E polymorphism had no impact on chemical composition of VLDL; for LDL particles the apo epsilon 2 allele was associated with a lower cholesterol to protein (C/P) ratio, whereas the opposite was true for the apo epsilon 4 allele. Despite the demonstrated impact of apo E polymorphism on plasma lipids and LDL chemical composition, in all phenotypic groups a dense LDL subfraction profile predominated. Thus, apo E polymorphism contributes to the lipid phenotypic expression in FCH, whereas further evidence was obtained that a dense LDL subfraction profile is an integral feature of FCH.  相似文献   

6.
OBJECTIVE: To evaluate whether hyperfibrinogenemia represents a component of the metabolic syndrome. RESEARCH DESIGN AND METHODS: A cross-sectional study was conducted on the relation between fibrinogen and the metabolic syndrome in a working population of 1,252 nondiabetic men, aged 35-64 years, randomly selected among all men participating in a health screening. We measured anthropometric characteristics, blood pressure, fasting plasma fibrinogen, cholesterol (total, LDL, and HDL), triglycerides, glucose, and insulin. Individuals with two or more metabolic abnormalities (defined as being in the highest quartile of the distribution of diastolic blood pressure, plasma glucose, or triglycerides or being in the lowest quartile of HDL cholesterol) were considered to have the metabolic syndrome. RESULTS: Age-adjusted fibrinogen levels correlated significantly with BMI, waist-to-hip ratio, systolic and diastolic blood pressure, plasma total cholesterol, LDL cholesterol, triglycerides, insulin, and HDL cholesterol (inversely). Subjects with the metabolic syndrome had significantly higher plasma fibrinogen levels than those without (285.1 +/- 1.9 vs. 300.2 +/- 3.0 mg/dl, mean +/- SE, P = 0.0001). Plasma fibrinogen concentrations and the prevalence of hyperfibrinogenemia (defined as > or = 350 mg/dl) increased progressively from 279 to 307 mg/dl (P = 0.0001) and from 9 to 22% (P = 0.0024), respectively, across categories with an increasing number of metabolic disorders characterizing the syndrome (only one, any two, three or more). In multivariate analyses, both plasma insulin and the metabolic syndrome were significantly and independently associated with plasma fibrinogen. CONCLUSIONS: The finding suggests that hyperfibrinogenemia may be considered a component of the metabolic syndrome. This may also explain the increased cardiovascular risk associated with hyperinsulinemia/insulin resistance.  相似文献   

7.
Obesity is associated with dyslipidaemia characterised by increased fasting triglyceride and decreased high-density lipoprotein (HDL) concentrations. Causes for obesity-associated dyslipidaemia include insulin resistance, excessive caloric intake, increased free fatty acid production and disturbances in the counter-regulatory hormones. We examined the relationships between lipid parameters and obesity before and after adjustment of insulin resistance in 902 Hong Kong Chinese men. After adjustment for age, smoking and insulin resistance, increasing body mass index (BMI) and waist-to-hip ratio (WHR) remained closely associated with increased concentrations of triglyceride and apolipoprotein B (apo B), increased ratios between low-density lipoprotein (LDL) and HDL (LDL/HDL), and that between apo B and LDL (apo B/LDL), increased fasting and 2-h plasma glucose and insulin, as well as decreased concentrations of HDL, HDL2 and apolipoprotein A-I (apo A-I). On stepwise multiple regression analysis using age, BMI, WHR, insulin resistance and fasting plasma glucose as independent variables, BMI and WHR were the major determinants for the variance of triglyceride, HDL and its subfractions, LDL/HDL, apo B and apo B/LDL. Age was the most important predictor for total cholesterol and LDL. Insulin resistance only explained less than 1% of the variance in triglyceride and apo B. This was compared to a variance between 10 and 16% in these parameters as explained by BMI and/or WHR. In conclusion, obesity is associated with dyslipidaemia in Chinese men, characterised by increased plasma triglyceride, apo B, LDL/HDL, apo B/LDL, and decreased HDL, HDL2 and apo A-I concentrations. Obesity independent of insulin resistance, in particular central adiposity as reflected by increased WHR, was the most important independent variable for many of these lipid abnormalities. Our results emphasised the multifactorial linkage between obesity and dyslipidaemia.  相似文献   

8.
Using artificial triglyceride emulsions, we have demonstrated the presence of non-equilibrating pools of apolipoproteins C-II and C-III in human plasma lipoproteins. As the concentrations of acceptor triglycerides were increased, a greater fraction of both apoC-II and apoC-III shifted away from the native plasma lipoproteins to the artificial lipid emulsions. All of the apoC-II and apoC-III in very low density and high density lipoproteins (VLDL and HDL), however, could not be removed from native plasma lipoproteins. The percent of total plasma apoC-II and apoC-III that could be recovered in the VLDL and HDL density fractions varied when plasma from different individuals was used. When plasma samples from normotriglyceridemic subjects were used, HDL was the primary donor of apoCs. The percent of total plasma apoCs associated with HDL decreased from 60% to 25% for apoC-II and from 65% to 15% for apoC-III. When plasma samples from hypertriglyceridemic subjects were incubated with artificial lipid emulsions, VLDL was the primary donor of apoCs. HDL from hypertriglyceridemic subjects only accounted for 5-10% of total fasting plasma apoCs and did not contribute significantly to the final apoC contents of the artificial triglyceride emulsions. To evaluate the significance of the depletion of exchangeable apoCs from plasma HDL, we also examined the ability of control and apoC-depleted HDL to serve as activator for bovine milk lipoprotein lipase (LPL) in vitro. When HDL depleted of exchangeable apoCs were used as the source of plasma apolipoproteins for the activation of LPL in vitro, only 5-10% of the maximal activity obtained with native HDL was demonstrated. In fact, in the presence of comparable concentrations of HDL apoC-II, activation of LPL was the least with HDL which lacked exchangeable apoCs. Our data thus indicated that the presence of exchangeable apoC-II on HDL is necessary for the activation of LPL in vitro. This finding is consistent with our data that suggest that HDL from hypertriglyceridemic subjects do not stimulate LPL as well as HDL from normolipidemic subjects.  相似文献   

9.
The large ethnic differences in prevalence of coronary artery disease between China and Europe may relate to both genetic and environmental differences. To assess possible genetic factors we have therefore studied the frequencies of disease-related variants of genes involved in lipid transport in 69 hypertriglyceridemic Chinese subjects and 74 healthy Chinese controls. The loci studied include lipoprotein lipase (Asp9Asn, Asn291Ser, Ser447Ter, and Thr361Thr); apolipoprotein A1 (restriction sites at MspI, XmnI, and PstI); and apolipoprotein (apo) CIII (G3175C). All these variants have been shown in previous literature publications to relate to either dyslipidemia and/or premature coronary heart disease in Caucasians. Two disease-related genetic variants in Europeans (Asp9Asn and Asn291Ser) were not found in the Chinese sample. The apo CIII G3175C variant was found more frequently in the upper tertile distributions for apolipoprotein CIII, apolipoprotein E, and plasma triglyceride/HDL ratios (P < 0.05). The rare allele of the apo AI MspI restriction site polymorphic variant was also found more frequently in the upper tertiles for apo CIII, apo E, and plasma triglyceride/HDL ratios (P < 0.04). Eleven of the most lipaemic Chinese subjects (with fasting plasma triglycerides >700 mg/dl) were analyzed for DNA sequence variation. One novel mutation was observed C1338A (which is a silent mutation at Thr361) and two others that are also found in European subjects (Ala261Thr and Ser447Ter). We conclude that genetic differences between Chinese and Europeans may have an effect on the prevalence of coronary artery risk factors involved in lipid transport, and further extended study is warranted.  相似文献   

10.
The behavior of apolipoprotein (apo) A-I in lipoprotein (Lp) AI and LpAI:AII was studied in 11 postmenopausal females and 11 males matched for plasma triglyceride and total cholesterol levels. Subjects consumed a baseline diet [35% fat (14% saturated, 15% monounsaturated, and 7% polyunsaturated), 15% protein, 49% carbohydrate, and 147 mg cholesterol/1000 kcal] for 6 weeks before the start of the kinetic study. At the end of the diet period, using a primed-constant infusion of [5,5,5-2H3]leucine, residence times (RT) and secretion rates (SR) of apoA-I were determined in 2 subpopulations of high-density lipoprotein (HDL) particles, LpAI and LpAI:AII. Plasma total cholesterol, low-density lipoprotein cholesterol, and triglyceride concentrations were similar in males and females. The mean plasma HDL cholesterol concentration in males (1.14 +/- 0.23 mmol/L; mean +/- SD) was lower than in females (1.42 +/- 0.18 mmol/L; P =. 0034). Similarly, the mean plasma concentration of apoA-I in males (130 +/- 21 mg/dL) was lower than that in females (150 +/- 19 mg/dL; P = .0421). The RT of apoA-I in either LpAI or LpAI:AII was similar between men and women. Despite the higher plasma apo A-I levels in female compared with male subjects, total apoA-I and apoA-I in LpAI and LpAI:AII pool sizes were similar between the two groups, attributable to the lower body weight of the female subjects. The mean SR of total apoA-I in males (8.5 +/- 2.7 mg.kg-1.d-1) was 22% lower than in females (10.9 +/- 2.3 mg.kg-1.d-1; P = .0389). The SR of both apoA-I in LpAI and LpAI:AII was lower in males than females, although the differences did not reach statistical significance. These data suggest that the difference observed in HDL cholesterol concentration between males and females is attributable to SR of apoA-I and not the catabolic rate.  相似文献   

11.
We studied the subclasses of plasma lipoproteins in normolipidemic, glucose-tolerant male relatives of noninsulin dependent diabetic patients (NIDDM), who represented either the lowest (n = 14) or the highest (n = 18) quintiles of fasting plasma insulin. The higher plasma triglyceride level in the high insulin group (1.61 mmol/l vs. 0.87 mmol/l, P < 0.001) was due to multiple differences in triglyceride-rich lipoproteins. The concentrations of larger VLDL1, smaller VLDL2 particles, and IDL particles were 3.8-fold, 2.5-fold, and 1.5-fold higher, respectively, in the high insulin group than in the low insulin group (P < 0.01 or less). In addition, hyperinsulinemic subjects had VLDL1, VLDL2, and IDL particles enriched in lipids and poor in protein. The lower plasma HDL cholesterol level in the high insulin group (1.20 mmol/l vs. 1.44 mmol/l, P < 0.01) compared to the low insulin group was a consequence of a 27% reduction of HDL2a concentration (P < 0.05) and a significantly reduced percentage of cholesterol in HDL3a, HDL3b, and HDL3c subclasses. On the other hand, the percentages of triglycerides in HDL2b, HDL2a, HDL3a, and HDL3b subclasses were 76%, 79%, 61%, and 50% higher, respectively, in the high insulin group than in the low insulin group (P < 0.01 or less). In the combined group, the concentration of VLDL1 and VLDL2 correlated positively with the concentrations of LDL2 and LDL3 and negatively with HDL2b and HDL2a subclasses (P < 0.05 or less). In conclusion, normolipidemic, glucose-tolerant but hyperinsulinemic relatives of NIDDM patients have qualitatively similar lipoprotein abnormalities as NIDDM patients. These abnormalities are not observed in insulin-sensitive relatives, suggesting that they develop in concert with insulin resistance.  相似文献   

12.
To investigate the role of various lipoproteins in plasma to promote cholesterol efflux from cell membranes, potencies of lipoproteins in normolipidemic fasting and postprandial (PP) plasmas to accept additional cholesterol molecules from cell membranes were determined. We used red blood cells (RBCs) and lipoproteins in fresh blood as donors and acceptors of cell membrane cholesterol, respectively. When fresh fasting plasma (n=24) containing active lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer proteins (CETP) was incubated with a 3-fold excess of autologous RBCs at 37 degrees C for 18 hours, plasma cholesterol levels increased by 19.6% (38.5+/-14.2 mg/dL) owing to an exclusive increase in the CE level. Very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL) fractions retained 48.1%, 26.3%, and 25.6% of the net cholesterol mass increase in fasting plasma, resulting in 91%, 8%, and 21% increases in their cholesterol contents, respectively. The PP plasma was 1.3-fold more potent than fasting plasma in promoting cholesterol efflux from RBCs by associating excess cholesterol with chylomicrons, resulting in a 356% increase in the cholesterol content of chylomicrons. These increases in lipoprotein cholesterol content indicate that chylomicrons were about 3.9x, 44x, and 17x more potent than fasting VLDL, LDL, and HDL, respectively, in accepting additional cholesterol molecules released from RBCs. The capacity of PP plasma to promote cholesterol efflux from RBCs was significantly correlated with plasma cholesterol levels (r=0.60, P<0.005), triglycerides (r=0.68, P<0.001), chylomicrons (r=0.90, P<0.001), VLDL (r=0.65, P<0.001), and LDL (r=0.47, P<0.025) but not with the levels of HDL (r= -0.34, P<0.20). In fasting plasma containing a low level of VLDL and HDL, isolated chylomicrons supplemented to the plasma were approximately 9x more potent than HDL in boosting the capacity of plasma to promote cholesterol efflux from RBCs. This study indicates that chylomicrons in PP plasma are the most potent ultimate acceptors of cholesterol released from cell membranes and that a low HDL level is not a factor that limits the ability of PP plasma to promote cholesterol efflux from cell membranes. Our data obtained from an in-vitro system suggest that PP chylomicrons may play a major role in promoting reverse cholesterol transport in vivo, since the transfer of cholesterol from cell membranes to chylomicrons will lead to the rapid removal of this cholesterol by the liver. HDL in vivo may promote reverse cholesterol transport by enhancing the rapid removal of chylomicrons from the circulation, since the rate of clearance of chylomicrons is positively correlated with the HDL level in plasma.  相似文献   

13.
Altered postprandial HDL metabolism is a possible cause of defective reverse cholesterol transport and increased cardiovascular risk in diabetic patients with a normal fasting lipoprotein profile. Ten normolipidemic, normoponderal non-insulin dependent diabetes mellitus (NIDDM) patients and seven controls received a 980 kcal meal containing 78 g lipids with 100 000 IU vitamin A. Chylomicron clearance was not different, but area under the curve (AUC) for retinyl palmitate in chylimicron-free serum (remnant clearance) was greater in patients (P < 0.02). LCAT activity increased postprandially to the same extent in both groups. In control subjects, cholesteryl ester transfer protein (CETP) activity (CETA) also increased by 20% (P < 0.01 at 6 h) in parallel with a 20% decrease in HDL2-CE (r = -0.55, P = 0.009). In NIDDM patients, on the contrary, CETA which was 35% higher in the fasting state (P < 0.005), decreased postprandially yet HDL2-CE remained unchanged. Postprandial HDL3 of controls were enriched with phospholipid (PL) (30.3 +/- 2.6% at 6 h) with respect to fasting (25.6 +/- 2.5%, P < 0.01) and to NIDDM-HDL3 (25.8 +/- 1.7% at 6 h, P < 0.01). These results show that variation in plasma CETA has little impact on HDL2-CE in NIDDH subjects. They support the concept that, in controls, the combined enrichment of HDL3 with PL, increased LCAT and CETA create the conditions for stimulation of cell cholesterol efflux and CE transfer to apo B lipoproteins. In NIDDM, because of the lesser HDL3 enrichment with PL and of the inverse trend of CETA, these conditions fail to occur, depriving the patients of a potentially efficient mechanism of unesterified cholesterol (UC) clearance, despite their strictly normal preprandial profile.  相似文献   

14.
Three groups of age- and weight-matched men (aged 40 to 70 years) without diabetes were studied: controls (n = 10), plasma triglycerides (TG) less than 180 mg/dL and no cardiovascular disease (CVD); HTG-CVD (n = 11), hypertriglyceridemic (HTG) (TG > 240 mg/dL) without CVD; and HTG+CVD (n = 10), HTG (TG > 240 mg/dL) with documented CVD. HTG+CVD subjects had higher fasting and post-oral glucose tolerance test insulin levels than the other two groups, respectively. Very-low-density lipoprotein (VLDL)+chylomicrons (CMs), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL), and three high-density lipoprotein (HDL) subfractions (HDL-L, HDL-M, and HDL-D, from least to most dense) were isolated by gradient ultracentrifugation. Fasting lipoproteins were similar in HTG groups, except for higher VLDL lipid to apolipoprotein (apo) B ratios (P < .04) in the HTG+CVD group. Subjects were fed a high-fat mixed meal, and lipoprotein composition was determined at 3, 6, 9, and 12 hours postprandially. Postprandial responses of the core lipids (TG and cholesterol esters [CE]) in all of the lipoprotein subfractions were similar in the two HTG groups at each time point. However, both controls and HTG-CVD subjects had increases in HDL-M phospholipid (PL) at 9 and 12 hours with no change in HDL-D PL. The HTG+CVD group, on the other hand, had no increase in HDL-M PL and had a substantial reduction in HDL-D PL. These changes resulted in significant increases in HDL-M and HDL-D PL to apo A-I ratios in both controls and HTG-CVD subjects between 6 and 12 hours, whereas there was no increase seen in the HTG+CVD group. The HTG-CVD group also had a significantly greater increase in the VLDL+CM PL to apo B ratio (P = .038) at 3 hours than the HTG+CVD group. This diminished amount of surface lipid per VLDL particle may account for the late decrease in the HDL-D PL to apo A-I ratio seen in HTG+CVD patients. There were no other postprandial lipid or apolipoprotein differences between the two HTG groups. We conclude therefore that the major postprandial lipoprotein abnormality in these HTG+CVD patients was a failure to increase the PL content per particle in VLDL+CM, HDL-M, and HDL-D. This abnormality could prevent the usual increase in reverse cholesterol transport seen in postprandial plasma and therefore contribute to their increased incidence of CVD. The greater insulin resistance seen in these patients also appears to contribute significantly to their CVD.  相似文献   

15.
We have generated transgenic mice over-expressing human apolipoprotein CI (apo CI) using the native gene joined to the downstream 154-bp liver-specific enhancer that we defined for apo E. Human apo CI (HuCI)-transgenic mice showed elevation of plasma triglycerides (mg/dl) compared to controls in both the fasted (211 +/- 81 vs 123 +/- 52, P = 0.0001) and fed (265 +/- 105 vs 146 +/- 68, P < 0.0001) states. Unlike the human apo CII (HuCII)- and apo CIII (HuCIII)-transgenic mouse models of hypertriglyceridemia, plasma cholesterol was disproportionately elevated (95 +/- 23 vs 73 +/- 23, P = 0.002, fasted and 90 +/- 24 vs 61 +/- 14, P < 0.0001, fed). Lipoprotein fractionation showed increased VLDL and IDL + LDL with an increased cholesterol/triglyceride ratio (0.114 vs 0.065, P = 0.02, in VLDL). The VLDL apo E/apo B ratio was decreased 3.4-fold (P = 0.05) and apo CII and apo CIII decreased in proportion to apo E. Triglyceride and apo B production rates were normal, but clearance rates of VLDL triglycerides and postlipolysis lipoprotein "remnants" were significantly slowed. Plasma apo B was significantly elevated. Unlike HuCII- and HuCIII-transgenic mice, VLDL from HuCI transgenic mice bound heparin-Sepharose, a model for cell-surface glycosaminoglycans, normally. In summary, apo CI overexpression is associated with decreased particulate uptake of apo B-containing lipoproteins, leading to increased levels of several potentially atherogenic species, including cholesterol-enriched VLDL, IDL, and LDL.  相似文献   

16.
BACKGROUND: prospective studies have demonstrated that a predominance of small, dense LDL particles (pattern B) precedes the clinical onset of coronary heart disease. Prevalence and characteristics of subjects with this LDL size abnormality were studied in young, nonobese, Japanese normolipidemic men. METHODS AND RESULTS: LDL peak particle diameter (PPD) was measured by continuous disc polyacrylamide gel electrophoresis in 223 nonobese normolipidemic men aged 18-20 years (mean+/-S.D. body mass index: 21.9+/-3.7 kg/m2, total cholesterol: 180+/-29 mg/dl, triglyceride: 62+/-34 mg/dl, HDL cholesterol: 58+/-12 mg/dl). Men with small LDL (PPD < 25.8 nm) were found in only 5.4% (n=12) whereas 197 men (88.3%) had a preponderance of large LDL (PPD 26.3 nm). As compared with men in a top tertile (PPD 27.5 nm) those in a low tertile (PPD < 26.9 nm) had higher serum levels of LDL cholesterol (120+/-31 vs 104+/-24 mg/dl), triglyceride (72+/-39 vs 49+/-16 mg/dl) and apolipoprotein (apo) B (84+/-21 vs 68+/-14 mg/dl), and lower HDL cholesterol (54+/-10 vs 60+/-12 mg/dl). They also had greater body mass index (23.2+/-4.6 vs 20.9+/-3.1 kg/m2) and percent body fat (21.5+/-7.7 vs 17.5+/-4.9%). LDL-PPD was positively correlated with HDL cholesterol (R=0.20, P=0.002) and was negatively correlated with apoB (R=0.34, P < 0.001), triglyceride (R=0.32, P < 0.001). percent body fat (R=0.26, P < 0.001), body mass index (R=0.24, P < 0.001), fat mass (R=0.23, P=0.001), total cholesterol (R=0.20, P=0.002). In multiple regression analysis, apoB, triglyceride, HDL cholesterol, apoAI and percent body fat explained 18% of LDLPPD variability. CONCLUSION: even in young, nonobese, normolipidemic men, LDL size appears to be associated with triglyceride-rich lipoprotein metabolism and body fat.  相似文献   

17.
The in vivo kinetics of the HDL apolipoproteins (apo) A-I and A-II were studied in six subjects with impaired glucose tolerance (IGT) and six control subjects with normal glucose tolerance (NGT), using a stable isotope approach. During a 12-h primed constant infusion of L-[ring-13C6]-phenylalanine, tracer enrichment was determined in apoA-I and apoA-II from ultracentrifugally isolated HDL. The rates of HDL apoA-I and apoA-II production and catabolism were estimated using a one-compartment model-based analysis. Triglycerides were higher in IGT subjects (1.33 +/- 0.21 vs. 0.84 +/- 0.27 mmol/l, P < 0.05), but were within the normal range. HDL cholesterol and apoA-I levels were significantly lower in subjects with IGT (1.07 +/- 0.15 vs. 1.36 +/- 0.14 mmol/l, P < 0.05; 0.94 +/- 0.10 vs. 1.34 +/- 0.07 g/l, P < 0.01). In IGT subjects, HDL composition was significantly altered, characterized by an increase in HDL triglycerides (4.9 +/- 1.9 vs. 3.2 +/- 1.0%, P < 0.05) and HDL phospholipids (34.7 +/- 2.6 vs. 27.5 +/- 5.8%, P < 0.05) and a decrease in HDL cholesteryl esters (10.1 +/- 2.0 vs. 12.7 +/- 2.9%, P < 0.05) and HDL apoA-I (31.5 +/- 4.4 vs. 43.2 +/- 2.4%, P < 0.05). The mean fractional catabolic rate (FCR) of HDL apoA-I was significantly higher in IGT subjects (0.34 +/- 0.05 vs. 0.26 +/- 0.03 day(-1), P < 0.01), while the HDL apoA-I production rate (PR), as well as the PR and FCR of HDL apoA-II, showed no differences between the two groups. There were significant correlations between HDL apoA-I FCR and the following parameters: HDL apoA-I (r = -0.902, P < 0.001), HDL cholesterol (r = -0.797, P = 0.001), plasma triglycerides (r = 0.743, P < 0.01), HDL triglycerides (r = 0.696, P < 0.01), and cholesterol ester transfer protein activity (r = 0.646, P < 0.01). We observed a strong positive association between increased apoA-I catabolism and insulin (r = 0.765, P < 0.01) and proinsulin (r = 0.797, P < 0.01) concentrations. These data support the hypothesis that the decrease in HDL cholesterol and apoA-I levels in IGT is principally the result of an enhanced apoA-I catabolism. The latter seems to be an early metabolic finding in IGT even when other lipid parameters, especially plasma triglycerides, still appear to be not or only weakly affected.  相似文献   

18.
PURPOSE: To evaluate whether a novel antiestrogen, toremifene, has similar antiatherogenic effects as tamoxifen. PATIENTS AND METHODS: Forty-nine postmenopausal patients with node-positive breast cancer were randomized in a trial that compared the effects of tamoxifen and toremifene on serum lipoproteins. Tamoxifen was given at 20 mg and toremifene at 60 mg orally per day for 3 years. Serum concentrations of apolipoprotein (apo) A-I, A-II, and B, and lipoprotein(a) [Lp(a)], cholesterol, triglyceride, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol were measured before and after 12 months of antiestrogen therapy. RESULTS: Both antiestrogens significantly reduced serum total and LDL cholesterol and apo B levels. However, the response of HDL cholesterol to treatments was clearly different between the groups. Toremifene increased the HDL level by 14%, whereas tamoxifen decreased it by 5% (P = .001). As a consequence, both cholesterol-to-HDL and LDL-to-HDL ratios decreased more in the toremifene than tamoxifen group (P = .008 and P = .03, respectively). Toremifene also increased the apo A-I level (P = .00007) and apo A-I-to-A-II ratio (P = .018). Both tamoxifen and toremifene decreased the Lp(a) concentration significantly (change, 34% v 41%). CONCLUSION: These results provide positive evidence that toremifene has antiatherogenic properties with potency to improve all lipoproteins that are associated with increased coronary heart disease (CHD) risk.  相似文献   

19.
To determine the mechanisms by which human hepatic lipase (HL) contributes to the metabolism of apolipoprotein (apo) B-containing lipoproteins and high density lipoproteins (HDL) in vivo, we developed and characterized HL transgenic mice. HL was localized by immunohistochemistry to the liver and to the adrenal cortex. In hemizygous (hHLTg+/0) and homozygous (hHLTg+/+) mice, postheparin plasma HL activity increased by 25- and 50-fold and plasma cholesterol levels decreased by 80% and 85%, respectively. In mice fed a high fat, high cholesterol diet to increase endogenous apoB-containing lipoproteins, plasma cholesterol decreased 33% (hHLTg+/0) and 75% (hHLTg+/+). Both apoB-containing remnant lipoproteins and HDL were reduced. To extend this observation, the HL transgene was expressed in human apoB transgenic (huBTg) and apoE-deficient (apoE-/-) mice, both of which have high plasma levels of apoB-containing lipoproteins. (Note that the huBTg mice that were used in these studies were all hemizygous for the human apoB gene.) In both the huBTg,hHLTg+/0 mice and the apoE-/-,hHLTg+/0 mice, plasma cholesterol decreased by 50%. This decrease was reflected in both the apoB-containing and the HDL fractions. To determine if HL catalytic activity is required for these decreases, we expressed catalytically inactive HL (HL-CAT) in apoE-/- mice. The postheparin plasma HL activities were similar in the apoE-/- and the apoE-/-,HL-CAT+/0 mice, reflecting the activity of the endogenous mouse HL and confirming that the HL-CAT was catalytically inactive. However, the postheparin plasma HL activity was 20-fold higher in the apoE-/-,hHLTg+/0 mice, indicating expression of the active human HL. Immunoblotting demonstrated high levels of human HL in postheparin plasma of both apoE-/-,hHLTg+/0 and apoE-/-,HL-CAT+/0 mice. Plasma cholesterol and apoB-containing lipoprotein levels were approximately 60% lower in apoE-/-,HL-CAT+/0 mice than in apoE-/- mice. However, the HDL were only minimally reduced. Thus, the catalytic activity of HL is critical for its effects on HDL but not for its effects on apoB-containing lipoproteins. These results provide evidence that HL can act as a ligand to remove apoB-containing lipoproteins from plasma.  相似文献   

20.
The effect of fenofibrate on plasma cholesteryl ester transfer protein (CETP) activity in relation to the quantitative and qualitative features of apoB- and apoA-I-containing lipoprotein subspecies was investigated in nine patients presenting with combined hyperlipidemia. Fenofibrate (200 mg/d for 8 weeks) induced significant reductions in plasma cholesterol (-16%; P < .01), triglyceride (-44%; P < .007), VLDL cholesterol (-52%; P = .01), LDL cholesterol (-14%; P < .001), and apoB (-15%; P < .009) levels and increased HDL cholesterol (19%; P = .0001) and apoA-I (12%; P = .003) levels. An exogenous cholesteryl ester transfer (CET) assay revealed a marked decrease (-26%; P < .002) in total plasma CETP-dependent CET activity after fenofibrate treatment. Concomitant with the pronounced reduction in VLDL levels (37%; P < .005), the rate of CET from HDL to VLDL was significantly reduced by 38% (P = .0001), whereas no modification in the rate of cholesteryl ester exchange between HDL and LDL occurred after fenofibrate therapy. Combined hyperlipidemia is characterized by an asymmetrical LDL profile in which small, dense LDL subspecies (LDL-4 and LDL-5, d = 1.039 to 1.063 g/mL) predominate. Fenofibrate quantitatively normalized the atherogenic LDL profile by reducing levels of dense LDL subspecies (-21%) and by inducing an elevation (26%; P < .05) in LDL subspecies of intermediate density (LDL-3, d = 1.029 to 1.039 g/mL), which possess optimal binding affinity for the cellular LDL receptor. However, no marked qualitative modifications in the chemical composition or size of LDL particles were observed after drug treatment. Interestingly, the HDL cholesterol concentration was increased by fenofibrate therapy, whereas no significant change was detected in total plasma HDL mass. In contrast, the HDL subspecies pattern was modified as the result of an increase in the total mass (11.7%) of HDL2a, HDL3a, and HDL3b (d = 1.091 to 1.156 g/mL) at the expense of reductions in the total mass (-23%) of HDL2b (d = 1.063 to 1.091 g/mL) and HDL3c (d = 1.156 to 1.179 g/mL). Such changes are consistent with a drug-induced reduction in CETP activity. In conclusion, the overall mechanism involved in the fenofibrate-induced modulation of the atherogenic dense LDL profile in combined hyperlipidemia primarily involves reduction in CET from HDL to VLDL together with normalization of the intravascular transformation of VLDL precursors to receptor-active LDLs of intermediate density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号