首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu Q  Hua L  Hou K  Cui H  Chen W  Chen P  Wang W  Li J  Li H 《Analytical chemistry》2011,83(23):8992-8998
A magnetic field enhanced photoelectron ionization (MEPEI) source combined with single photon ionization (SPI) was developed for an orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). A commercial radio frequency (rf) powered vacuum ultraviolet (VUV) lamp was used as SPI light source, and the photoelectrons generated by photoelectric effect were accelerated to induce electron ionization (EI). The MEPEI was obtained by applying a magnetic field of about 800 G with a permanent annular magnet. Compared to a nonmagnetic field photoelectron ionization source, the signal intensities for SO(2), SF(6), O(2), and N(2) in MEPEI were improved more than 2 orders with the photoelectron energy around 20 eV, while most of the characteristics of soft ionization still remained. Simulation with SIMION showed that the sensitivity enhancement in MEPEI was ascribed to the increase of the electron moving path and the improvement of the electrons transmission. The limits of detection for SO(2) and benzene were 750 and 80 ppbv within a detection time of 4 s, respectively. The advantages of the source, including broad range of ionizable compounds, reduced fragments, and good sensitivity with low energy MEPEI, were demonstrated by monitoring pyrolysis products of polyvinyl chloride (PVC) and the intermediate products in discharging of the SF(6) gas inpurity.  相似文献   

2.
The application of soft ionization methods for mass spectrometry (MS), such as single-photon ionization (SPI) using vacuum ultraviolet (VUV) light, provides powerful analytical instrumentation for real-time on-line monitoring of organic substances in gaseous matrixes. A compact and mobile quadrupole mass spectrometer (QMS) system using a novel electron beam pumped rare gas VUV lamp for SPI has been developed for on-line analysis of organic trace compounds (ppb concentrations). The VUV radiation of the light source is employed for SPI in the ion source of the QMS. The concept of the interfacing of the VUV light source with the QMS is described and the SPI-QMS is characterized. On-line detection limits down to 50 ppb for benzene, toluene, and m-xylene were achieved. The instrument is well suited for continuous measurements of aromatic and aliphatic trace compounds and can therefore be used for on-line monitoring of trace compounds in dynamically fluctuating process gases. First measurements of gas standards, petrochemical samples, and on-line monitoring of automotive exhaust are presented.  相似文献   

3.
Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range.  相似文献   

4.
Fast on-line detection of organic compounds from complex mixtures, such as industrial process gas streams, require selective and sensitive analytical methods. One feasible approach for this purpose is the use of mass spectrometry (MS) with a selective and soft (fragment-free) ionization technique, such as chemical ionization (CI) or photo ionization (PI). Single photon ionization (SPI) with vacuum ultraviolet (VUV) light is a particularly sof tionization technique, well-suited for detection of both aromatic and aliphatic species. Problematic, however, is the generation of the VUV light. In general, the vacuum ultraviolet (VUV) light sources for SPI-MS are based either on lasers (e.g., 118-nm radiation generated by frequency-tripling of the third harmonic of a Nd:YAG laser) or on conventional VUV lamps, such as deuterium lamps. Althoughthe laser-based techniques are very sophisticated and expensive, the conventional lamps have serious drawbacks regarding their optical parameters, such as low-output power, low spectral power density, and broad emission bands. In this work, a novel excimer VUV light source, in which an electron beam is used to form rare gas excimer species, is used. The excimer VUV light sourceproduces brilliant and intense VUV light. The novel VUV light source was coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). A special interface design, including optical (VUV optics) as well as electronic measures (e.g., pulsed ion extraction) was realized. The use of the excimer VUV lamp for SPI will allow the realization of very compact, rugged, and sensitive SPI-TOFMS devices, which preferably will be adapted for process analytical application or monitoring issues (e.g., chemical warfare detection). The excimer VUV-lamp technology delivers VUV light with a good beam quality and high-output power at low costs. Furthermore, it allows changing the emitted wavelength as well as the bandwidth of the excimer VUV lamp in t he 100-200-nm region by changing the gas filling. Consequently, SPI-TOFMS with an excimer light source is a fast detection technique that can be used for online monitoring, for example, in environmental studies or industrial manufacturing processes. In this paper, technology and characteristics of the new excimer light source, as well as the combination with the TOFMS, are presented. Furthermore, a first characterization of the SPI-TOFMS instrument, regarding analytical parameters such as detection limits and selectivity, is given. This includes a discussion of potential improvements that probably will be achievable within a future prototype genertation. Finally, first applications of the system for on-line measurement of organic trace species in a complex gas mixture (here, motorcycle exhaust gas) are presented.  相似文献   

5.
This paper reports on a newly developed mobile mass spectrometer for comprehensive on-line analysis of complex gas mixtures such as ambient air or industrial process gases. Three ionization methods, namely, the resonance-enhanced multiphoton ionization (REMPI), vacuum-ultraviolet single-photon ionization (SPI), and electron impact ionization (EI) are implemented in this instrument and can be operated (quasi-) simultaneously. By means of this setup, a wide range of compounds can be analyzed due to the unique ionization selectivitiy and sensitivity profiles provided by the different ionization techniques. The mass spectrometer is designed for field application even under severe conditions. The REMPI technique is suitable for the selective and soft ionization (without fragmentation) of aromatic compounds at trace level (ppbv/pptv). The also soft but less selective SPI technique with 118-nm vacuum-ultraviolet laser pulses is used as a second laser-based ionization method. Mass spectra obtained by this technique show profiles of most organic compounds (aliphatic and aromatic species) and of some low IP inorganic substances (e.g., ammonia, nitrogen oxide) down to ppbv concentrations. In addition to the laser-based ionization techniques, EI ionization can be used for analysis of the bulk components such as water, oxygen, nitrogen, and carbon dioxide as well as for detection of inorganic minor components such as HCN or HCl from combustion flue gases at ppmv concentration levels. Each method yields specific mass spectrometric information of the sample composition. Special techniques have been developed to combine the three ionization methods in a single mass spectrometer and to allow the quasi-parallel application of all three ionization techniques.  相似文献   

6.
Electron impact ionization has several known advantages; however, heated filament electron sources have pressure limitations and their power consumption can be significant for certain applications, such as in field-portable instruments. Herein, we evaluate a VUV krypton lamp as an alternative source for ionization inside the ion trap of a mass spectrometer. The observed fragmentation patterns are more characteristic of electron impact ionization than photoionization. In addition, mass spectra of analytes with ionization potentials higher than the lamp's photon energy (10.6 eV) can be easily obtained. A photoelectron impact ionization mechanism is suggested by the observed data allowed by the work function of the ion trap electrodes (4.5 eV), which is well within the lamp's photon energy. In this case, the photoelectrons emitted at the surface of the ion trap end-cap electrode are accelerated by the applied rf field to the ring electrode. This allows the photoelectrons to gain sufficient energy to ionize compounds with high ionization potentials to yield mass spectra characteristic of electron impact. In this manner, electron impact ionization can be used in ion trap mass spectrometers at low powers and without the limitations imposed by elevated pressures on heated filaments.  相似文献   

7.
In this work, a sensitive and robust vacuum ultra-violet (VUV) single-photon ionization (SPI) ion trap time-of-flight mass spectrometer (VUV-SPI-IT-TOFMS) for on-line, realtime monitoring of chlorinated organic compounds in waste incineration flue gas has been newly developed. The fragment-free SPI technique with 121.6-nm VUV lamp irradiated by a microwave generator and the quadrupole ion trap to accumulate and select analyte ions were combined with a reflectron time-of-flight mass spectrometer to detect chlorinated organic compounds at trace level. This measuring system was tuned up to detect dioxins precursors with the aim at an application to monitoring trace level toxic substances in flue gases from incinerator furnaces. As a result, this technology has made it possible to analyze trichlorobenzene (T3CB), a dioxin precursor, in 18 s with a sensitivity of 80 ng/m3-N (10 pptv) using the selective accumulation of analyte substances and separation of interfering substances in the ion trap. Moreover, the first field test of the continuous monitoring T3CB in an actual waste incineration flue gas had been done for 7 months. The results show that this system has an exceeding robust performance and is able to maintain the high sensitivity in analyzing T3CB for long months of operation.  相似文献   

8.
A method for analyzing organoselenium and organic acid metabolites using laser desorption from graphite surfaces coupled to vacuum ultraviolet single photon ionization mass spectrometry (LD/SPI MS) is described. The 1-10-fmol sensitivity and linear dynamic range allows quantitative detection of selenomethionine, trimethylselenonium ion, methylselenogalactosamine, and 1beta-methylseleno-N-acetyl-D-galactosamine in complex biological samples such as human urine. In addition, common urinary metabolites such as tartronic, glutaric, orotic, uric, suberic, and hydroxyhippuric acids, are readily detected. Screening and quantitative detection of these organoselenium and organic acid metabolites is achieved within minutes. The results are also consistent with those obtained using high-performance liquid chromatography tandem mass spectrometry techniques. The study demonstrates the viability of matrix-free LD/SPI MS for molecular characterization and quantitative analysis of biological metabolites in the m/z 10-500 range that are present in complex biological fluids.  相似文献   

9.
Single-photon ionization (SPI) using vacuum ultraviolet (VUV) light produced by an electron beam pumped rare gas excimer source has been coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). The novel device enables real-time on-line monitoring of organic trace substances in complex gaseous matrixes down to the ppb range. The pulsed VUV radiation of the light source is employed for SPI in the ion source of the TOFMS. Ion extraction is also carried out in a pulsed mode with a short time delay with respect to ionization. The experimental setup of the interface VUV light source/time-of-flight mass spectrometer is described, and the novel SPI-TOFMS system is characterized by means of standard calibration gases. Limits of detection down to 50 ppb for aliphatic and aromatic hydrocarbons were achieved. First on-line applications comprised real-time measurements of aromatic and aliphatic trace compounds in mainstream cigarette smoke, which represents a highly dynamic fluctuating gaseous matrix. Time resolution was sufficient to monitor the smoking process on a puff-by-puff resolved basis. Furthermore, human breath analysis has been carried out to detect differences in the breath of a smoker and a nonsmoker, respectively. Several well-known biomarkers for smoke could be identified in the smoker's breath. The possibility for even shorter measurement times while maintaining the achieved sensitivity makes this new device a promising tool for on-line analysis of organic trace compounds in process gases or biological systems.  相似文献   

10.
A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production.  相似文献   

11.
Mass spectrometry (MS) is an established analytical technique to analyze evolved gas in thermogravimetry (TG). In this study, for the first time a novel SPI-MS technique using an electron beam pumped VUV excimer lamp as photon source (lambda = 126 nm) was employed in conjunction with thermogravimetry. The coupling was achieved with an improved heated interface and adjacent transfer capillary between TG and ion source of a quadrupole mass spectrometer. The feasibility of this approach was proven by investigating semivolatile substances such as long-chain alkanes (heptadecane C17H36), polymers, e.g., polystyrene, polycarbonate, and acrylonitrile-butadiene-styrene, polymer mixtures and blends. Mass spectra with almost no fragmentation were obtained, and quantification of selected substances could be achieved. Polymer mixtures could be distinguished by their SPI mass spectra, and the effect of premixing of polymers has been accessed. Its unique attributes render the TA-SPI-MS method a promising new tool for quantitative and qualitative evaluation of complex organic thermal degradation products.  相似文献   

12.
A newly conceived compact and mobile time-of flight mass spectrometer (TOFMS) for real-time monitoring of highly complex gas mixtures is presented. The device utilizes two selective and sensitive soft ionization techniques, viz., resonance-enhanced multiphoton ionization (REMPI) and single-photon ionization (SPI) in a (quasi)-simultaneous mode. Both methods allow a fragmentationless ionization. The REMPI method selectively addresses aromatic species, while with SPI applying vacuum ultaviolet light (118 nm) in principle all compounds with an ionization potential below 10.5 eV are accessible. This provides comprehensive information of the chemical composition of complex matrixes. The combustion and pyrolysis behavior of five organic materials typically used in steel processing in China was studied. The trace amounts of organic compounds in the gas phase during combustion and pyrolysis were monitored selectively and sensitively by real-time SPI/REMPI-TOFMS. The measurements were carried out at several constant temperatures in the range from 300 to 1190 degrees C in both synthetic air and nitrogen. Timely resolved mass spectra reveal the formation and subsequent growth of aromatic molecules. At lower temperatures, highly alkylated PAHs predominate, while at temperatures above 800 degrees C, the more stable benzene and PAHs without side chains prevail. Potential hyphenation of SPI/REMPI-TOFMS to methods of thermal analysis is discussed.  相似文献   

13.
Yue B  Lee ED  Rockwood AL  Lee ML 《Analytical chemistry》2005,77(13):4167-4175
A new electron ionization source was developed for orthogonal acceleration time-of-flight mass spectrometry (TOFMS) based on the superimposition of a magnetic field around a radio frequency-only (rf-only) ion guide. The cylindrically symmetric magnetic field compresses the electron beam from the electron source into a long narrow volume along the ion guide axis. The magnetic field also helps to maintain a narrow energy distribution of electrons that penetrate the full length of the ion guide despite the influence of the radial rf field. Ionization occurs inside the ion guide with improved efficiency resulting from efficient use of electrons, prolonged interaction time, and nontraditionally large ionization volume. At the same time, the rf field effectively focuses ions radially and confines them to the axis of the ion guide by collisional focusing, leading to high ion transmission efficiency. Furthermore, the source can also be operated in a trap-and-pulse mode to improve the ion sampling duty cycle of orthogonal acceleration TOFMS. To validate the design concept of this new ion source, a simple prototype using a single set of cylindrical rods was constructed and retrofitted to an orthogonal acceleration TOFMS. A significant increase in ion signal intensity was observed by operating the source in a pulsed ion extraction mode. Low detection limits (for example, 12 fg for toluene) were determined at 12.5 spectra s(-1) in the full spectrum mode.  相似文献   

14.
Surface ionization ion mobility spectrometry   总被引:1,自引:0,他引:1  
A surface ionization (SI) source was designed and constructed for ion mobility spectrometry (IMS). Compared with a conventional (63)Ni source, the surface ionization source is as simple and reliable, has an extended dynamic response range, is more selective in response, and does not have regulatory problems associated with radioactive ionization sources. The performance of this SI-IMS was evaluated with several different classes of compounds. Triethylamine was employed for studying the behavior of the ionization source under different source conditions and gaseous environments. Amines, tobacco alkaloids, and triazine herbicides were also investigated. Picogram level detection limits were achieved for target compounds with a response dynamic range of 5 orders of magnitude. Selective monitoring by IMS was also demonstrated. While the surface ionization source does not have the universality of response that is obtained with a (63)Ni ionization source, it is an excellent nonradioactive alternative for the ionization and ion mobility detection of those compounds to which it responds.  相似文献   

15.
Several ionization potentials (IPs) of security relevant substances were determined with single photon ionization time of flight mass spectrometry (SPI-TOFMS) using monochromatized synchrotron radiation from the "Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung" (BESSY). In detail, the IPs of nine explosives and related compounds, seven narcotics and narcotics precursors, and one chemical warfare agent (CWA) precursor were determined, whereas six IPs already known from the literature were verified correctly. From seven other substances, including one CWA precursor, the IP could not be determined as the molecule ion peak could not be detected. For these substances the appearance energy (AE) of a main fragment was determined. The analyzed security-relevant substances showed IPs significantly below the IPs of common matrix compounds such as nitrogen and oxygen. Therefore, it is possible to find photon energies in between, whereby the molecules of interest can be detected with SPI in very low concentrations due to the shielding of the matrix. All determined IPs except the one of the explosive EGDN were below 10.5 eV. Hence, laser-generated 118 nm photons can be applied for detecting almost all security-relevant substances by, e.g., SPI-TOFMS.  相似文献   

16.
This work presents the direct coupling of a custom-made smoking machine (SM) to fast gas chromatography combined with single-photon ionization mass spectrometry (GC × SPI-MS) utilizing a six-port, two-position valve for online puff-resolved comprehensive two-dimensional investigation of cigarette smoke. The innovative electron-beam pumped rare gas excimer light source (EBEL) filled with argon provided vacuum ultraviolet (VUV) photons of 9.8 ± 0.4 eV (126 ± 9 nm) for SPI. Puff-by-puff quantification of 14 hazardous volatile organic smoke constituents from the 2R4F Kentucky research cigarette was enabled for two smoking regimes, i.e., ISO and Canadian Intense, after determination of photoionization cross sections. The investigated analytes comprised NO, acetaldehyde, butadiene, acrolein, propanal, acetone, isoprene, furan, crotonaldehyde, isobutanal, butanal, 2-butanone, benzene, and toluene. The determined amounts of these compounds in cigarette smoke agreed excellently with the literature values. Furthermore, the two well-known patterns of puff-by-puff behaviors for these different smoke constituents were obtained for both whole smoke and gas-phase measurements.  相似文献   

17.
A gas chromatograph has been coupled to a direct-current gas sampling glow discharge (GSGD) ionization source for the mass spectrometric analysis of halogenated hydrocarbons. The continuous discharge is contained within the first vacuum stage of the differentially pumped spectrometer interface. The discharge can be operated statically or rapidly switched between atomic and molecular ionization modes; both atomic and molecular spectra could be generated in the helium-supported plasma. In the switched configuration, the duty cycle is 50% for each mode. The ionization mode is selected by application of either a positive (molecular) or negative (atomic) potential to the sample introduction electrode, and the two kinds of spectra can be sequentially collected by changing the voltage and current between two preset values. Similar ion-optical voltage settings could be employed for both modes of operation, with the exception of the steering-plate potential, which had to be modulated between two different values (at the plasma switching frequency) to obtain the greatest atomic and molecular signal levels. The source is capable of generating mass spectra resembling those from an electron-impact source while operated in the molecular ionization mode (both static and dynamic). The best atomic detection limits (1-25 fg of analyte/ second) were obtained when the plasma was operated in the static mode with single-channel gated ion counting. Atomic detection limits obtained with boxcar averager data collection were comparable for static and switched operation of the source (1-30 pg/s). Likewise, the molecular detection limits were similar for the static and switched modes and span the range of 7-140 pg/s (boxcar averagers). Precision was better than 7% RSD under all conditions. The atomic and molecular chromatographic peak heights were nearly unchanged over a range of modulation rates from 5 to 100 Hz. The elemental ratio (35Cl+/12C+) for chloroform was also measured over a range of plasma modulation rates (5-90 Hz) and found to be randomly distributed about the sample mean. Several chlorinated hydrocarbons were introduced into the discharge and could be successfully differentiated (or speciated) on the basis of their 35Cl+/12C+ ratios.  相似文献   

18.
This work describes the realization of rapid switching between hard electron ionization (EI) and soft single-photon ionization (SPI) integrated in a compact orthogonal acceleration time-of-flight mass spectrometer. Vacuum-ultraviolet (VUV) photons of 9.8 eV (126 nm) emitted from the innovative electron-beam-pumped rare-gas excimer light source (EBEL) filled with argon are focused into the ion chamber by an ellipsoidal mirror optic for accomplishing of SPI. This novel orthogonal acceleration time-of-flight mass spectrometer with switching capability was hyphenated to one-dimensional gas chromatography (GC) and comprehensive two-dimensional (2D) gas chromatography (GC × GC) for the first time. Within this demonstration study, a maximum switching frequency of 80 Hz was applied for investigation of a mineral-oil-type diesel sample. This approach allows the quasi-simultaneous acquisition of complementary information about the fragmentation pattern (EI) as well as the molecular mass (SPI) of compounds within a single analysis. Furthermore, by application of a polar GC column for separation, the SPI data can be displayed in a 2D contour plot, leading to a comprehensive 2D characterization (GC × MS), whereas the typical group-type assignment for diesel is also met.  相似文献   

19.
A novel ionization source for biological mass spectrometry is described that combines atmospheric pressure (AP) ionization and matrix-assisted laser desorption/ionization (MALDI). The transfer of the ions from the atmospheric pressure ionization region to the high vacuum is pneumatically assisted (PA) by a stream of nitrogen, hence the acronym PA-AP MALDI. PA-AP MALDI is readily interchangeable with electrospray ionization on an orthogonal acceleration time-of-flight (oaTOF) mass spectrometer. Sample preparation is identical to that for conventional vacuum MALDI and uses the same matrix compounds, such as alpha-cyano-4-hydroxycinnamic acid. The performance of this ion source on the oaTOF mass spectrometer is compared with that of conventional vacuum MALDI-TOF for the analysis of peptides. PA-AP MALDI can detect low femtomole amounts of peptides in mixtures with good signal-to-noise ratio and with less discrimination for the detection of individual peptides in a protein digest. Peptide ions produced by this method generally exhibit no metastable fragmentation, whereas an oligosaccharide ionized by PA-AP MALDI shows several structurally diagnostic fragment ions. Total sample consumption is higher for PA-AP MALDI than for vacuum MALDI, as the transfer of ions into the vacuum system is relatively inefficient. This ionization method is able to produce protonated molecular ions for small proteins such as insulin, but these tend to form clusters with the matrix material. Limitations of the oaTOF mass spectrometer for singly charged high-mass ions make it difficult to evaluate the ionization of larger proteins.  相似文献   

20.
Chemical derivatization of peptides allows efficient F2 laser single photon ionization (SPI) of Fmoc-derivatized peptides covalently bound to surfaces. Laser desorption photoionization mass spectrometry using 337-nm pulses for desorption and 157.6-nm pulses for threshold SPI forms large ions identified as common peptide fragments bound to either Fmoc or the surface linker. Electronic structure calculations indicate the Fmoc label is behaving as an ionization tag for the entire peptide, lowering the ionization potential of the complex below the 7.87-eV photon energy. This method should allow detection of many molecular species covalently or electrostatically bound to surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号