首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents two new solution procedures for a deterministic lot size problem, a matrix algorithm and a heuristic matrix method. The algorithm is based on the dual of a linear programming model formulation of the lot size problem, and it provides optimal solutions even in the general case of time-varying parameters. A comparison of the efficiency of the new solution procedures with well-known methods is developed. New applications of the techniques described within the fields of engineering (optimal design of a pump-pipe system) and economics (a model for import-planning) are referred to.  相似文献   

2.
Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non‐linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from the analysis, resulting in a formulation that can be implemented within the traditional structure of a finite element program but that permits the use of arbitrary sets of basis functions that are defined only through the input file. Elements ranging from a traditional linear four‐node tetrahedron through a higher‐order element combining XFEM and isogeometric analysis may be specified entirely through an input file without any additional programming. Examples of this framework to applications with Lagrange elements, isogeometric elements, and XFEM basis functions for fracture are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Using a Representative volume element (RVE) to represent the microstructure of periodic composite materials, this paper develops a non‐linear numerical technique to calculate the macroscopic shakedown domains of composites subjected to cyclic loads. The shakedown analysis is performed using homogenization theory and the displacement‐based finite element method. With the aid of homogenization theory, the classical kinematic shakedown theorem is generalized to incorporate the microstructure of composites. Using an associated flow rule, the plastic dissipation power for an ellipsoid yield criterion is expressed in terms of the kinematically admissible velocity. By means of non‐linear mathematical programming techniques, a finite element formulation of kinematic shakedown analysis is then developed leading to a non‐linear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the plastic dissipation power which is to be minimized and an upper bound to the shakedown load of a composite is then obtained. An effective, direct iterative algorithm is proposed to solve the non‐linear programming problem. The effectiveness and efficiency of the proposed numerical method have been validated by several numerical examples. This can serve as a useful numerical tool for developing engineering design methods involving composite materials. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
To enhance the reliability and efficiency of the multicriteria optimization procedure, a compromise programming method using multibounds formulation (MBF) is proposed in this paper. This method can be used either to obtain the Pareto optimum set or to find the ‘best’ Pareto optimum solution in the sense of having the minimum distance to the utopia point. By introducing a set of artificial design variables, it is shown that a simplified and easy‐to‐use formulation can be established for practical applications. Particularly, this formulation is well adapted to the efficient dual solution approach due to the convexity of objective function. Theoretically, based on the Kuhn–Tucker optimality conditions, demonstrations show that the new formulation is equivalent to its original form and thus retains the basic properties of the latter. Numerical examples will be solved to show the capacity of this method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A mathematical programming formulation of strain‐driven path‐following strategies to perform shakedown and limit analysis for perfectly elastoplastic materials in an FEM context is presented. From the optimization point of view, standard arc‐length strain‐driven elastoplastic analyses, recently extended to shakedown, are identified as particular decomposition strategies used to solve a proximal point algorithm applied to the static shakedown theorem that is then solved by means of a convergent sequence of safe states. The mathematical programming approach allows: a direct comparison with other non‐linear programming methods, simpler convergence proofs and duality to be exploited. Owing to the unified approach in terms of total stresses, the strain‐driven algorithms become more effective and less non‐linear with respect to a self‐equilibrated stress formulation and easier to implement in the existing codes performing elastoplastic analysis. The elastic domain is represented avoiding any linearization of the yield function so improving both the accuracy and the performance. Better results are obtained using two different finite elements, one with a good behavior in the elastic range and the other suitable for performing elastoplastic analysis. The proposed formulation is compared with a specialized implementation of the primal–dual interior point method suitable to solve the problems at hand. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
This work presents two new error estimation approaches for the BEM applied to 2D potential problems. The first approach involves a local error estimator based on a gradient recovery procedure in which the error function is generated from differences between smoothed and non‐smoothed rates of change of boundary variables in the local tangential direction. The second approach involves the external problem formulation and gives both local and global measures of error, depending on a choice of the external evaluation point. These approaches are post‐processing procedures. Both estimators show consistency with mesh refinement and give similar qualitative results. The error estimator using the gradient recovery approach is more general, as this formulation does not rely on an ‘optimal’ choice of an external parameter. This work presents also the use of a local error estimator in an adaptive mesh refinement procedure. This r‐refinement approach is based on the minimization of the standard deviation of the local error estimate. A non‐linear programming procedure using a feasible‐point method is employed using Lagrange multipliers and a set of active constraints. The optimization procedure produces finer meshes close to a singularity and results that are consistent with the problem physics. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a structural reanalysis method and its applications in optimal design of trusses. This reanalysis technique is derived primarily on the basis of a reduced basis formulation, and it has several advantages over previous reduced basis methods. In particular, the reduced system is uncoupled by using a Gram–Schmidt orthonormalization procedure and an error measure is introduced to adaptively monitor whether a good approximate solution is achieved. The latter aspect makes this reanalysis method suitable for use in optimal design problems because the changes in design variables usually vary during a design process. Discussions are presented on the implementation of this reanalysis method using both mathematical programming and optimality criteria‐based optimization schemes. Finally, several example problems of optimal truss design are used to validate the proposed reanalysis‐based design procedure. The presented numerical results indicate that the new reanalysis technique affects very slightly the accuracy of the optimal solutions and it does speed up the design process when the system analysed is large. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
Although linear programming problems can be solved in polynomial time by the ellipsoid method and interior-point algorithms, there still remains a long-standing open problem of devising a strongly polynomial algorithm for linear programming (or of disproving the existence of such an algorithm). The present work is motivated by an attempt toward solving this problem. Linear programming problems can be formulated in terms of a zonotope, a kind of greedy polyhedron, on which linear optimization is made easily. We propose a method, called the LP-Newton method, for linear programming that is based on the zonotope formulation and the minimum-norm-point algorithm of Philip Wolfe. The LP-Newton method is a finite algorithm even for real-number input data with exact arithmetic computations. We show some preliminary computational results to examine the behavior of the LP-Newton method. Major part of this paper was presented as a plenary talk with the same title at ICOTA7 (December 12–15, 2007, Kobe, Japan) by the first author. The fourth author’s research was carried out while visiting RIMS in August 2007.  相似文献   

9.
We present a finite element method for non‐linear and nearly incompressible elasticity. The formulation is based on Petrov–Galerkin discretization for the pressure and is closely related to the average nodal pressure formulation presented earlier in the context of incompressible and nearly incompressible dynamic explicit applications (Commun. Numer. Meth. Engng 1998; 14 :437–449). Some numerical examples are presented to show the efficiency of the approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The paper presents the theory and the numerics of a thermodynamically consistent formulation of gradient plasticity at small strains. Starting from the classical local continuum formulation, which fails to produce physically meaningful and numerically converging results within localization computations, a thermodynamically motivated gradient plasticity formulation is envisioned. The model is based on an assumption for the Helmholtz free energy incorporating the gradient of the internal history variable, a yield condition and the postulate of maximum dissipation resulting in an associated structure. As a result the driving force conjugated to the hardening evolution is identified as the quasi‐non‐local drag stress which incorporates besides the strictly local drag stress essentially the divergence of a vectorial hardening flux. At the numerical side, besides the balance of linear momentum, the algorithmic consistency condition has to be solved in weak form. Thereby, the crucial issue is the determination of the active constraints exhibiting plastic loading which is solved by an active set search algorithm borrowed from convex non‐linear programming. Moreover, different discretization techniques are proposed in order to compare the FE‐performance in local plasticity with the advocated gradient formulation both for hardening and softening. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A new formulation is presented for equilibrium shape analysis of cable networks considering geometrical and material non‐linearities. Friction between cables and joint devices is also considered. The second‐order cone programming (SOCP) problem which has the same solution as that of minimization of total potential energy is solved to obtain the equilibrium configuration. The optimality conditions are derived to verify that the solution satisfies equilibrium conditions and friction laws. Since no assumption on stress state is needed in the proposed method, no process of trial and error is involved. No effort is required to develop any analysis software because SOCP can be solved by using the well‐developed software based on the interior‐point method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, a new finite‐element formulation for the solution of electromechanical boundary value problems is presented. As opposed to the standard formulation that uses scalar electric potential as nodal variables, this new formulation implements a vector potential from which components of electric displacement are derived. For linear piezoelectric materials with positive definite material moduli, the resulting finite‐element stiffness matrix from the vector potential formulation is also positive definite. If the material is non‐linear in a fashion characteristic of ferroelectric materials, it is demonstrated that a straightforward iterative solution procedure is unstable for the standard scalar potential formulation, but stable for the new vector potential formulation. Finally, the method is used to compute fields around a crack tip in an idealized non‐linear ferroelectric material, and results are compared to an analytical solution. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents an improved weighting method for multicriteria structural optimization. By introducing artificial design variables, here called as multibounds formulation (MBF), we demonstrate mathematically that the weighting combination of criteria can be transformed into a simplified problem with a linear objective function. This is a unified formulation for one criterion and multicriteria problems. Due to the uncoupling of involved criteria after the transformation, the extension and the adaptation of monotonic approximation‐based convex programming methods such as the convex linearization (CONLIN) or the method of moving asymptotes (MMA) are made possible to solve multicriteria problems as efficiently as for one criterion problems. In this work, a multicriteria optimization tool is developed by integrating the multibounds formulation with the CONLIN optimizer and the ABAQUS finite element analysis system. Some numerical examples are taken into account to show the efficiency of this approach. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A displacement‐based continuous‐Galerkin finite element formulation for general polyhedra is presented for applications in nonlinear solid mechanics. The polyhedra can have an arbitrary number of vertices or faces. The faces of the polyhedra can have an arbitrary number of edges and can be nonplanar. The polyhedra can be nonconvex with only the mild restriction of star convexity with respect to the vertex‐averaged centroid. Conforming shape functions are constructed using harmonic functions defined on the undeformed configuration, thus requiring the use of a total‐Lagrangian finite element formulation in large deformation applications. For nonlinear applications with computationally intensive constitutive models, it is important to minimize the number of element quadrature points. For this reason, an integration scheme is adopted in which the number of quadrature points is equal to the number of vertices. As a first step toward verifying the element behavior in the general nonlinear setting, several linear verification examples are presented using both random Voronoi meshes and distorted hexahedral meshes. For the hexahedral meshes, results for the polyhedral formulation are compared to those of the standard trilinear hexahedral formulation. The element behavior in the nearly incompressible regime is also examined. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This work is focused on the topology optimization of lightweight structures consisting of multiphase materials. Instead of adopting the common idea of using volume constraint, a new problem formulation with mass constraint is proposed. Meanwhile, recursive multiphase materials interpolation (RMMI) and uniform multiphase materials interpolation (UMMI) schemes are discussed and compared based on numerical tests and theoretical analysis. It is indicated that the nonlinearity of the mass constraint introduced by RMMI brings numerical difficulties to attain the global optimum of the optimization problem. On the contrary, the UMMI‐2 scheme makes it possible to formulate the mass constraint in a linear form with separable design variables. One such formulation favors very much the problem resolution by means of mathematical programming approaches, especially the convex programming methods. Moreover, numerical analysis indicates that fully uniform initial weighting is beneficial to seek the global optimum when UMMI‐2 scheme is used. Besides, the relationship between the volume constraint and mass constraint is theoretically revealed. The filtering technique is adapted to avoid the checkerboard pattern related to the problem with multiphase materials. Numerical examples show that the UMMI‐2 scheme with fully uniform initial weighting is reliable and efficient to deal with the structural topology optimization with multiphase materials and mass constraint. Meanwhile, the mass constraint formulation is evidently more significant than the volume constraint formulation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
BANERJEE  P.  ZHOU  Y.  MONTREUIL  B. 《IIE Transactions》1997,29(4):277-291
A continuous plane manufacturing cell layout and intercell flow path skeleton problem formulation involving rectilinear distances between cell input/output stations is mapped to a genetic search space. Certain properties of such a search space are exploited to design a very efficient method for reduction of a mixed-integer programming problem formulation to an iterative sequence of linear programming problems. This paper reports theoretical and computational insights for efficiently finding good solutions for the above problem formulation, taking advantage of the solution structure and the search stage. The scores of the objective function on a set of test cases indicate better solutions than those previously reported in the literature. The empirical results based on multiple runs also suggest that the method generates final results that are not dependent on the quality of the initial solution; hence the solution search seems to be more global than many of the previous approaches.  相似文献   

17.
In Part 1, two approaches for constrained optimal control problems (OCP) using the differential dynamic programming (DDP) are presented. In the present paper, three illustrative examples are used to evaluate the approaches: (1) A linear quadratic problem (LQP) with an inequality constraint on the state variable, (2) a single degree of freedom nonlinear impact absorber with an inequality constraint on the state variable, and (3) a linear structural control problem with inequality constraints on the state and control variables. The solutions are compared with the results available in the literature. It is found that the DDP is far more efficient compared to the NLP approach. Also, the continuous-time DDP formulation is superior to the discrete-time formulation. The continuous-time DDP with the multiplier approach is recommended for applications since it is more general compared to the one based on quadratic programming.  相似文献   

18.
A stabilized node‐based uniform strain tetrahedral element is presented and analyzed for finite deformation elasticity. The element is based on linear interpolation of a classical displacement‐based tetrahedral element formulation but applies nodal averaging of the deformation gradient to improve mechanical behavior, especially in the regime of near‐incompressibility where classical linear tetrahedral elements perform very poorly. This uniform strain approach adopted here exhibits spurious modes as has been previously reported in the literature. We present a new type of stabilization exploiting the circumstance that the instability in the formulation is related to the isochoric strain energy contribution only and we therefore present a stabilization based on an isochoric–volumetric splitting of the stress tensor. We demonstrate that by stabilizing the isochoric energy contributions only, reintroduction of volumetric locking through the stabilization can be avoided. The isochoric–volumetric splitting can be applied for all types of materials with only minor restrictions and leads to a formulation that demonstrates impressive performance in examples provided. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Real‐time applications based on the principle of Dynamic Substructuring require integration methods that can deal with constraints without exceeding an a priori fixed number of steps. For these applications, first we introduce novel partitioned algorithms able to solve DAEs arising from transient structural dynamics. In particular, the spatial domain is partitioned into a set of disconnected subdomains and continuity conditions of acceleration at the interface are modeled using a dual Schur formulation. Interface equations along with subdomain equations lead to a system of DAEs for which both staggered and parallel procedures are developed. Moreover under the framework of projection methods, also a parallel partitioned method is conceived. The proposed partitioned algorithms enable a Rosenbrock‐based linearly implicit LSRT2 method, to be strongly coupled with different time steps in each subdomain. Thus, user‐defined algorithmic damping and subcycling strategies are allowed. Secondly, the paper presents the convergence analysis of the novel schemes for linear single‐Degree‐of‐Freedom (DoF) systems. The algorithms are generally A‐stable and preserve the accuracy order as the original monolithic method. Successively, these results are validated via simulations on single‐ and three‐DoFs systems. Finally, the insight gained from previous analyses is confirmed by means of numerical experiments on a coupled spring–pendulum system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A new formulation and numerical procedures are developed for the analysis of arbitrary crack propagation in shells using the extended finite element method. The method is valid for completely non‐linear problems. Through‐the‐thickness cracks in sandwich shells are considered. An exact shell kinematics is presented, and a new enrichment of the rotation field is proposed which satisfies the director inextensibility condition. To avoid locking, an enhanced strain formulation is proposed for the 4‐node cracked shell element. A finite strain plane stress constitutive model based on the logarithmic corotational rate is employed. A cohesive zone model is introduced which embodies the special characteristics of the shell kinematics. Stress intensity factors are calculated for selected problems and crack propagation problems are solved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号