首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
针对黔西地区煤层气资源开发潜力及难度存在较大差异的特征,探索煤层气合层排采的最优层段。依托松河井田煤层气勘查开发示范工程实测资料,分析了井田煤储层发育及煤层气成藏特征,探讨了黔西煤层群发育区煤层气合层开发层段优选的原则、参数及方法,并据此利用模糊综合评判法优选出松河井田最优开发层段。研究表明:井田煤层气资源主要赋存于龙潭组煤系多个低渗薄至中厚煤层群中,煤系地温梯度表现为明显正异常,储层压力偏高,煤层含气量整体较高且含气饱和度高,具备良好的煤层气开发条件。综合分析认为,龙潭组9—12号煤组、13—16号煤组为井田煤层气合层开发的2个最有利层段。  相似文献   

2.
易同生  周效志  金军 《煤炭学报》2016,41(1):212-220
基于煤系气共探共采示范工程,分析了黔西松河井田龙潭煤系煤层气-致密气赋存特征及开发条件,探讨了煤系气共探共采的适配性技术工艺。研究表明:井田煤系气主要赋存于龙潭煤系多个煤层及临近细砂岩、粉砂岩中,具备多煤层共采、煤系气共采的资源及开发条件。煤储层具有高温、超压、高含气量、含气高-过饱和的特点,适宜进行煤层气地面开发;但在区域高地应力背景下,裂隙闭合、矿物充填等原因导致储层原始渗透性差,煤系气地面开发需进行储层改造。气测录井、裸眼综合测井及含气层综合评价是井田煤系气共探共采中发现、认识、评价含气层及产气层段优选的关键技术,可为煤系气共探共采方案制定提供依据。在丛式井组开发模式下,"小层射孔、组段压裂、合层排采"系列工艺与井田地形地质条件相匹配,可显著提高多煤层共采、煤系气共探共采的工程效果。  相似文献   

3.
为了评价黔西松河井田煤层气资源的开发潜力,依托松河井田煤层气勘查开发示范工程,探讨了井田煤层气赋存及成藏特征,采用类比法、等温吸附法及数值模拟法综合研究了煤层气资源可采性。研究结果表明:松河井田煤层气资源主要赋存于龙潭煤系多个低渗薄至中厚煤层群中,煤系地温梯度为3.0~5.5℃/hm,储层压力系数为1.08~1.40,含气量为6.46~20.99 m3/t,含气饱和度大于70%,煤储层具有高温、超压、高含气量、含气高-过饱和的特征,有利于煤层气的地面开发。采用类比法、等温吸附曲线法及数值模拟法得出的可采系数分别为:40%~53%、64.4%~69.9%及43.6%~44.3%,综合分析认为研究区煤层气可采系数为45%~50%,表现出较好的煤层气可采性特点。  相似文献   

4.
煤储层地温场条件是影响煤层气赋存与产出的关键因素,从目前沁水盆地煤层气井生产情况来看,煤储层地温低异常区煤层气开发井的产气效果普遍较差,因此,开展煤储层地温场条件研究,揭示低地温异常区形成机理,对于低地温区煤层气开发显得尤为重要。采用沁水盆地煤层气井地温实测数据,系统分析了沁水盆地3号煤层和15号煤层地温及其梯度和大地热流分布特征,揭示了煤储层地温分布规律,提出了煤储层地温梯度等级划分标准,圈定了沁水盆地石炭-二叠系煤储层地温梯度小于1.6℃/hm的地温低异常区,揭示了研究区煤储层地温低异常区分布及其受控机制。研究结果表明,沁水盆地恒温带温度整体呈现由西北向东南逐渐增高的趋势,恒温带深度由北向南逐渐变浅,恒温带温度为13.2~15.2℃,恒温带深度为27.4~33.1 m。沁水盆地煤储层地温及其地温梯度均随深度的增加而增高。3号煤储层温度为14.6~100.9℃,平均为30.58℃,地温梯度为0.008~3.770℃/hm,平均为1.62℃/hm; 15号煤储层温度为15.3~111.8℃,平均值为33.28℃,地温梯度为0.046~5.350℃/hm,平均为1.87℃/hm;大地热流...  相似文献   

5.
贾波 《煤》2020,29(1):5-8
裂缝形态特征是储层压裂改造效果评价、压裂工程设计及优化、煤层气井井网布置及优化等的重要研究内容。为摸清寺河井田3号煤层气主力开发煤层人工压裂裂缝形态特征,对井田内微地震裂缝监测资料进行了研究。结果表明:浅埋深、厚煤层、中小型压裂规模及中小排量压裂情况下,裂缝长度171.3~284.2 m,平均219.7 m;裂缝高度13.3~16.5 m,平均14.9 m;裂缝方位为北东42.5~47.9°,平均45.9°;受煤的非均质性和应力状态影响,在压裂规模及压裂参数相近的情况下,各压裂井的裂缝形态特征有所不同。  相似文献   

6.
CO2泡沫压裂技术在煤层气开发中的应用前景   总被引:1,自引:0,他引:1  
依据煤层气储层的特点和CO2的性质,作者通过CO2泡沫压裂液实验研究、压裂工艺探讨。对CO2泡沫压裂技术在煤层气开发中的应用前景进行了探讨。结果表明,CO2泡沫压裂技术是一项较为理想的煤层气储层改造技术,但由于其发泡温度(40℃以上)和施工成本等原因,其应用在地层温度较低和煤层气产量不高的地区会受到一定的限制。  相似文献   

7.
根据煤炭及煤层气勘查数据,分析了松河井田煤层气开发地质、煤储层渗透性和含气性条件,估算了煤层气资源量,并结合松6井工程开发效果,综合评价了该区煤层气地面抽采潜力。结果表明:松河井田煤层气赋存及保存条件好,薄-中厚煤层群发育,且煤层埋深、煤体结构、渗透性及含气性相对较好,埋深对煤层含气量控制作用明显,300~400 m为含气梯度转折深度,煤层气资源量达66.96×108m3;松6井采用"多段合层压裂、合层排采"工艺,实现单井单压裂段产气量长期超过1 000 m3/d的突破,但产气量波动较大,建议加强合层排采层间矛盾问题研究;鉴于该区地形、交通及地质条件的制约,建议采用"地面丛式井钻井、多段合层压裂"开发方式。  相似文献   

8.
针对沁水盆地深部煤层气地质与储层认识不足、开发措施还在探索阶段等现状,以寿阳区块15煤为研究对象,探讨了深部煤层气地质特殊性及开发对策。研究区15煤层发育稳定,煤层厚度基本在3m左右|煤层含气量大部分在10~12m3/t,纵向上受煤层埋深和变质程度的双重影响,含气量在埋深大约1200~1500m出现临界点后随深度增加逐渐降低。与其他深部地区“三高”特征不同,15煤深部储层表现为低压、高应力、中等地温的特征,属比较严重的低压力梯度和低地温梯度范畴。煤储层渗透性为高孔低渗分类,渗透率一般0.01~0.1mD,渗透性主要受煤层埋深、地应力、煤体结构和孔隙特征影响。根据15煤低水分含量、高孔隙度以及生产井产气特征,认为游离气含量可能具有较大的占比。最后提出,单独开发15煤层时可采用顶板岩层水平井分段压裂方式或围岩多分支水平井方式,该技术已在盆地南部15煤取得了产气突破|15煤层及9、3煤层多煤层开发时可采用围岩与煤层合压的垂直井方式,并对开发工程中的增产和排采工艺提出了相应的建议。  相似文献   

9.
从生烃及储存条件2个方面分析了松河井田煤储层异常高压的形成机制,并探讨了其对煤层气开发的影响。研究表明:松河井田较高的煤变质程度有利于煤储层大量生烃;同时,高地应力造成的储层低渗透率,顶底板良好的封盖作用以及龙潭煤系较弱的水动力条件等为煤层气的储存提供了良好的条件,上述因素共同作用导致井田煤储层的异常高压。储层异常高压有利于煤层气的大量保存,增大了煤层气井排水降压的幅度,为煤层气地面开发提供了有利条件,但同时易造成煤储层较强的应力敏感性,因此建议降低煤层气井排采过程中的流压,以缓解应力敏感效应的不利影响。  相似文献   

10.
由于深部煤层(埋深大于1 000 m)埋藏深、渗透率较低、温度高、地应力高、储层力学性质复杂等特点,常规煤层气水力压裂技术开发深部煤层气具有一定的局限性。鉴于CO_2泡沫压裂液在煤层中滤失量小、黏度高、储层伤害低等优点,研究了CO_2泡沫压裂技术开采深部煤层气及其适用条件分析,可为下一步深部煤层气开发提供技术支撑。  相似文献   

11.
贵州小屯井田龙潭组煤系具有煤层数量多、煤层间距小、煤层厚度薄等特点,煤层气开发需以多层合采为主要方式;与单一厚层状煤层相比,多煤层合采易发生层间干扰,影响合采效果及资源动用程度。基于小屯井田钻孔岩性与含气性分析,识别出有利、较有利与不利3种煤岩层组合类型,考查各煤层厚度、埋深、含气量等特征,对比各煤层的煤层气资源条件,综合考虑储盖组合、含气性、渗透性、储层压力、地应力等因素,划分出Ⅰ(6煤+6煤+6煤)、Ⅱ(7煤)、Ⅲ(33煤+34煤)共3套叠置煤层气系统;在此基础上,优化合采产层组合,并确定有序开发模式为优先开发上部产层组合(6煤+6煤+6煤),其次为下部组合(33煤+34煤),最后考虑经济与时间成本确定是否单独开发7煤;确立了资源条件分析-含气系统划分-产层组合优化的多-薄煤层发育区煤层气合采层位优选思路。  相似文献   

12.
长期以来,在煤层气水力压裂研究中多偏重于压裂工艺的研究,而系统考虑地质因素的影响力度不够,从而导致压裂施工效果不明显。基于目标区的钻井、测井和岩心分析测试等资料,分析了主煤层煤岩孔裂隙发育特征、渗透率等特征,柿庄南区块及邻区煤层渗透率平面上变化较大,一般0.01~0.3 m D,平均0.09 m D以上。基于煤岩渗透率和煤岩敏感性测试,确定了煤层渗透率敏感性的主要地质因素——随着地应力梯度的增加呈指数降低,煤储层渗透性受地应力影响明显,随着弹性模量的增大,岩石的可压缩性降低,渗透率受到的影响也越小。  相似文献   

13.
宋诚 《煤》2020,29(3):4-7
煤层气储层物性及特征是煤层气地质理论最重要的基础研究内容,影响着煤层气的开发条件和效果。基于长平井田地质、煤层气地质、煤层气勘探开发及测试资料,采用煤层气地质理论及数理分析方法,对井田内3号煤层气储层物性及特征进行了研究。结果表明:长平井田3号煤层具有良好的含煤性和含气性,是煤层气开发的良好对象和气源保障;煤层的孔裂隙破坏相对严重,煤的孔隙度低、透气性差,不利于煤层气高效渗流产出;煤储层能量弱、压力较低,属于低压煤储层;煤对甲烷具有较强的吸附能力和储集能力。  相似文献   

14.
申超 《煤》2023,(5):17-21
煤储层物性特征是影响煤层气开发效果的重要方面和研究重点,以沁水煤田东南部岳城井田为工程背景,基于井田煤与煤层气地质、勘探开发及相关测试资料,采用煤层气地质理论及数理统计方法对井田3号煤储层物性特征进行研究。研究结果表明:岳城井田3号煤层为结构简单、破坏较轻、展布稳定的厚煤层;煤层的“生、储、盖”条件较好且地处甲烷带,煤层气含量及甲烷含量普遍较高;煤层孔裂隙系统发育且连通性好,渗透率高;煤储层压力及压力梯度值较低、能量弱,为低压(欠压)煤储层;煤对煤层气具有很强的吸附能力、吸附量大,具有良好的煤层气储集空间。  相似文献   

15.
基于保存完整且煤层厚度大的化乐井田煤田地质特征分析,研究了井田内煤层厚度特征、煤储层物性特征、煤层瓦斯含量等相关特征参数,优选了区内煤层气有利区块,获得区内煤层气的资源量229.69亿m~3,资源丰度为1.96亿m3/km~2,为下一步区内煤层气的勘探开发提供了资源保障。  相似文献   

16.
基于晋城无烟煤储层地质条件下的储层和煤岩参数,结合晋城无烟煤煤层气藏直井生产必须压裂增产的实际,使用澳大利亚联邦科工组织的煤层气储层数值模拟软件(SIMED Win)模拟了不同生产井和注入井井距(116m、200m、300m)条件下的煤层气增产和二氧化碳埋存过程。研究结果表明,煤储层注CO2增产煤层甲烷效果明显;CO2-ECBM过程中煤层气生产井的气、水产量呈现联动变化;煤储层的割理孔隙度在甲烷解吸、二氧化碳吸附、煤岩有效应力改变的综合效应下呈现增高-降低-增高-降低的变化趋势。综合考虑煤层甲烷产量和CO2的封存能力,选择200m产注井距具有较好的注入增产效果。  相似文献   

17.
基于贵州松河井田薄-中厚煤层群普遍发育的特点,以可采煤层为主要目标,依据沉积环境、储层特性、煤层间距等因素,将龙潭组主要煤层划分为5个煤组。结合我国北方有关合层排采的经验和松河井田的煤层气地质特征,分析出该区煤层气合层排采的主控因素包括2个方面:一是储层能量,具体参数为压力梯度、含气饱和度和临储比;二是储层导流能力,具体参数包括原始渗透率、煤体结构;根据松河井田储层测试及煤层气生产试验数据,分析得出第1煤组和第2煤组是合层排采的最优组合;第4煤组不适合与其他煤组进行合层排采;第3煤组、第5煤组均不适合与第1煤组及第2煤组进行合层排采,但第3煤组可以与第5煤组合层排采。  相似文献   

18.
黔西都格井田煤层气储层特征及可采性   总被引:1,自引:0,他引:1       下载免费PDF全文
为预测评价黔西都格井田煤层气资源的可采潜力,推进黔西地区薄至中厚煤层群发育条件下的煤层气勘探开发工作,基于在该井田内实施的煤层气井所获得的地质资料,分析了可采煤层和顶底板发育条件、储层压力、含气性和孔渗性等重要储层地质特征,利用等温吸附曲线、相似地区储层类比和实际排采结果拟合等方法预测了煤层气可采性。结果表明:都格井田可采煤层含气量为3.94~29.95 m3/t,平均12.48 m3/t,含气饱和度平均为60%,煤储层以常压为主,含气饱和度较高,并有含气量高、孔渗性好的特点。通过等温吸附曲线法、类比法、排采试验数据拟合等3种不同方法预测都格井田可采系数分别为:0.49~0.68,0.40~0.53和0.41,综合评价可采系数为0.41~0.68,说明了井田具有较好的煤层气开发条件和可采性。  相似文献   

19.
屯留井田煤层气井排采主控因素研究   总被引:2,自引:0,他引:2  
为提高煤层气井的产能,分析煤层气排采机理和排采阶段,并从地质构造、顶底板岩性、压裂液及井网部署等方面,探讨影响屯留井田煤层气井排采的主要因素。研究认为褶皱对煤层气井的排采效果影响较大,裂隙和顶底板也对煤层气排采有一定影响;采用压裂工艺对煤储层强化改造中,活性水+氮气压裂液体系助排效果优于活性水压裂,而清洁压裂液助排效果最差;研究区煤储层特征决定了屯留井田煤层气井难以获得高产量,但可能产气时间较长。同时研究认为,研究区煤层气井井网宜采用排间距200 m×250 m的小井网结构,且井位布置应与主裂缝延伸方向(东北方向)平行。  相似文献   

20.
基于Griffith强度理论的煤储层水力压裂有利区评价   总被引:3,自引:0,他引:3  
水力压裂有利区评价是煤储层压裂改造施工设计的基础。通过对沁水盆地西南部3号煤储层42个水力压裂地应力测试数据统计,系统分析了研究区煤储层地应力分布规律。采用378口水力压裂井资料,基于格里菲斯(Griffith)强度理论计算了研究区煤储层单轴抗拉强度,建立了煤储层破裂压力与最小水平主应力和抗拉强度之间关系和模型,揭示了研究区煤储层可压裂性特征,建立了基于Griffith强度理论的煤储层水力压裂有利区评价方法,对煤储层水力压裂有利区进行了评价。研究结果表明,研究区块3号煤层最大水平主应力14.67~45.05 MPa,平均为29.31 MPa,最大水平主应力梯度为2.00~4.84 MPa/100 m,平均为3.27 MPa/100 m;最小水平主应力10.51~29.09 MPa,平均为18.61 MPa;最小水平主应力梯度为1.44~2.85 MPa/100m,平均为2.09MPa/100 m,煤储层应力和压力均随深度的增加呈线性增大的规律。基于格里菲斯(Griffith)强度理论计算的研究区3号煤储层单轴抗拉强度为0.15~1.10 MPa,在平面上存在一定的差异性。根据单轴抗拉强度值将煤储层可压裂性划分为4类,对于较高抗拉强度区和高抗拉强度区(Ⅲ和Ⅳ),煤储层抗拉强度值大,煤层气井水力压裂改造中起裂压力高,难以进行压裂改造。对于低抗拉强度区和较低抗拉强度区(Ⅰ和Ⅱ),煤储层抗拉强度值小,煤层气井水力压裂改造中起裂压力小,易于进行压裂改造,评价结果与实际水力压裂情况相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号