首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Utilization of lime and rice husk ash for soil stabilization produced considerable strength gain and other geotechnical properties of the stabilized soils. Its application could be also superior for construction materials as compressed-stabilized earth (CSE) or unfired-brick. This paper presents the investigation result of the application of lime and rice husk for unfired brick or compressed stabilized earth. The compressive and three-point flexural strength tests including compressive strength after water submersion were carried out in this present study. The investigation results show that compressive and flexural strength of clay brick are improved by adding of lime and RHA. The best quantity of lime and RHA in this study, is obtained by ratio 1:1 of lime and RHA. The addition of sand in stabilized clay resulted in more improvement in the water retention ability.  相似文献   

2.
This study aims to improve the unconfined compressive strength of soils using additives as well as by predicting the strength behavior of stabilized soils using two artificial-intelligence-based models. The soils used in this study are stabilized using various combinations of cement, lime, and rice husk ash. To predict the results of unconfined compressive strength tests conducted on soils, a comprehensive laboratory dataset comprising 137 soil specimens treated with different combinations of cement, lime, and rice husk ash is used. Two artificial-intelligence-based models including artificial neural networks and support vector machines are used comparatively to predict the strength characteristics of soils treated with cement, lime, and rice husk ash under different conditions. The suggested models predicted the unconfined compressive strength of soils accurately and can be introduced as reliable predictive models in geotechnical engineering. This study demonstrates the better performance of support vector machines in predicting the strength of the investigated soils compared with artificial neural networks. The type of kernel function used in support vector machine models contributed positively to the performance of the proposed models. Moreover, based on sensitivity analysis results, it is discovered that cement and lime contents impose more prominent effects on the unconfined compressive strength values of the investigated soils compared with the other parameters.  相似文献   

3.
In this study, the effects of rice husk ash (RHA) on various geotechnical properties of cohesive (A-7-6 group) and cohesionless (A-1-b group) soils were determined and compared. Atterberg limits, dry density, optimum moisture content, unconfined compressive strength, California bearing ratio, cohesion and angle of internal friction of A-1-b and A-7-6 group soils were studied with different percentages of rice husk ash (0, 4, 8, 12, 16, 20, and 24). Optimum moisture content, compressive strength, California bearing ratio and cohesion of both soils increased with increase in RHA. Maximum dry density decreased with RHA contents. Angle of internal friction of A-7-6 soil increased while that of A-1-b soil decreased with RHA contents. From the point of view of economy and CBR value, A-1-b soil with 16% RHA is recommended for base materials for field trials in the first instance while A-7-6 soil with 17% RHA may be recommended only for sub-base materials.  相似文献   

4.
研究了稻壳灰、硅灰、稻壳灰+粉煤灰、硅灰+粉煤灰对混凝土抗压强度、抗折强度、抗硫酸侵蚀能力和抗碳化能力的影响。结果表明:掺加5%~10%稻壳灰或硅灰有助于提升混凝土的抗压强度和抗折强度,且稻壳灰、硅灰掺量越高抗压强度越高,掺硅灰混凝土相对于掺稻壳灰混凝土的抗压和抗折强度更高,掺稻壳灰+粉煤灰、硅灰+粉煤灰试件的抗压和抗折强度低于基准组;稻壳灰相较于硅灰能更好地降低混凝土的干密度,而硅灰相较于稻壳灰能更好地降低试件的吸水率,粉煤灰的摻入会降低试件的干密度,但吸水率明显增加;掺加稻壳灰、硅灰有助于提升试件的抗硫酸侵蚀能力,且硅灰的提升效果优于稻壳灰,掺入粉煤灰后试件的抗硫酸侵蚀能力进一步提高;掺稻壳灰、硅灰试件的抗碳化能力均优于基准组,且硅灰的改善效果优于稻壳灰,而掺入粉煤灰的试件抗碳化性能最差。  相似文献   

5.
粉煤灰作新型建筑砂浆胶凝材料的试验研究   总被引:5,自引:0,他引:5  
以粉煤灰为主要原料,经机械磨细后,掺人少量水泥及复合激发剂(石灰、石膏、硫酸钠等),通过正交试验,配制出强度达到27.5级砌筑水泥要求的性能良好的新型粉煤灰砂浆粉,可作为中低强度等级建筑砂浆的胶凝材料,取代水泥与石灰.  相似文献   

6.
In this paper materials like rice husk ash, burnt clay and red mud are examined for their pozzolanic properties. Rice husk ash, obtained from various sources, is analysed by X-ray diffraction. Compressive strength properties of lime-pozzolana mortars with rice husk ash, burnt clay and red mud as pozzolana are studied. Influence of grinding of rice husk ash and intergrinding with lime are also investigated. Combination pozzolana with partial replacement of burnt clay and red mud by rice husk ash are examined for their pozzolanic properties. Long term strength behaviour of lime-pozzolana mortars is investigated to understand the durability of lime-pozzolana cements.  相似文献   

7.
This study develops the compressive strength, water permeability and workability of concrete by partial replacement of cement with agro-waste rice husk ash. Two types of rice husk ash with average particle size of 5 micron (ultra fine particles) and 95 micron and with four different contents of 5%, 10%, 15% and 20% by weight were used. Replacement of cement up to maximum of 15% and 20% respectively by 95 and 5 μm rice husk ash, produces concrete with improved strength. However, the ultimate strength of concrete was gained at 10% of cement replacement by ultra fine rice husk ash particles. Also the percentage, velocity and coefficient of water absorption significantly decreased with 10% cement replacement by ultra fine rice husk ash. Moreover, the workability of fresh concrete was remarkably improved by increasing the content of rice husk ash especially in the case of coarser size. It is concluded that partial replacement of cement with rice husk ash improves the compressive strength and workability of concrete and decreases its water permeability. In addition, decreasing rice husk ash average particle size provides a positive effect on the compressive strength and water permeability of hardened concrete but indicates adverse effect on the workability of fresh concrete.  相似文献   

8.
通过试验研究了掺稻壳灰的活性粉末混凝土(RPC)的配合比,根据最大密实度理论对掺稻壳灰的RPC进行了基本配合比设计;试验比较了石英砂和天然砂2种细集料对RPC性能的影响;对不同水胶比的RPC进行试验,推荐了适宜水胶比;以稻壳灰替代硅灰,试验研究不同稻壳灰替代率对RPC的流动性、强度及耐久性的影响。结果表明:采用天然砂替代石英砂作为细骨料对RPC抗折强度、抗压强度及流动度影响不大;掺稻壳灰的RPC的适宜水胶比为0.20~0.22;随着稻壳灰替代硅灰掺量的增加,其收缩率降低且随龄期增长变化减缓,同时其抗氯离子渗透性能有所下降;建议根据不同使用性能要求选择稻壳灰部分或完全替代硅灰的RPC。  相似文献   

9.
通过等量替代法,研究了普通烧制稻壳灰等量替代水泥后对水泥胶砂强度的影响.结果表明,普通烧制稻壳灰替代率为2%时,试件28 d抗折强度和抗压强度均高于空白胶砂试件,表明掺入少量的稻壳灰有一定的增强作用;稻壳灰替代率为4%时,对胶砂试件的强度影响不明显;稻壳灰替代率>8%时,胶砂强度降低幅度较大.将普通烧制稻壳灰以低替代率应用于水泥混凝土中是可行的.  相似文献   

10.
Rice husk ash is one of the promising pozzolanic materials that can be blended with Portland cement for the production of durable concrete and at the same time it is a value added product. Addition of rice husk ash to Portland cement not only improves the early strength of concrete, but also forms a calcium silicate hydrate (CSH) gel around the cement particles which is highly dense and less porous. This may increase the strength of concrete against cracking. So far a systematic and detailed investigations on the corrosion performance of rice husk ash blended concrete is very scarce. Therefore, in the present investigation, a realistic approach has been made using different techniques such as compressive strength, bond strength, split tensile strength etc. Corrosion performance was evaluated using, open circuit potential measurements, rapid chloride ion permeation test and impressed voltage test and the results were discussed.  相似文献   

11.
This study investigated the behavior of apparent electrical resistivity of concrete mixes with the addition of rice husk ash using Wenner’s four electrode method. Tests included compressive strength, porosity and electrical conductivity of the pore solution. The contents of rice husk ash tested were 10%, 20% and 30% and results were compared with a reference mix with 100% Portland cement and two other binary mixes with 35% fly ash and 50% blast furnace slag. Higher contents of rice husk ash resulted in higher electrical resistivity, which exceeded those of all other samples. However, for compressive strength levels between 40 MPa and 70 MPa, the mix with 50% blast furnace slag showed the best combination of cost and performance.  相似文献   

12.
Soft computing techniques have recently been widely used to model some of human activities in many areas of civil engineering applications. In this paper, two models in gene expression programming (GEP) approach for predicting compressive strength of concretes containing rice husk ash have been developed at the age of 1, 3, 7, 14, 28, 56 and 90 days. For purpose of building the models, experimental results for 188 specimens produced with 41 different mixture proportions are obtained from the literature. According to these experimental results, the models are arranged by using seven different input variables in GEP approach. In according to these input variables, the compressive strength values from mechanical properties of concretes containing rice husk ash are predicted in GEP approach models. The results of training, testing and validation sets of the models are compared with experimental results. All of the results showed that GEP is a strong technique for the prediction of compressive strength values of concretes containing rice husk ash.  相似文献   

13.
何淅淅  薛科  杨智 《建筑技术》2010,41(5):465-469
通过对9组190mm厚普通混凝土小型空心砌块砌体以及9组保温承重混凝土小型空心砌块砌体的受压力学性能进行对比试验,分析了保温承重混凝土小型空心砌块砌体强度及变形的影响因素。研究表明,保温构造层可增加混凝土小型空心砌块砌体的抗压强度,但对砌体的变形存在不利影响。建议对保温复合砌块砌体的抗压强度按承重砌块截面积计算,并应在设计中从严掌握相关变形参数。  相似文献   

14.
为研究填充块材和外围构件对钢筋混凝土框格单元结构受力性能的影响,对4个框格单元和2个空框格结构进行1/2比例模型加载试验。结果表明,开裂前填充砌体与钢筋混凝土框格粘着为一体共同抵抗外力,开裂后结构转化为砌体压杆抗力机制。外围构件弯曲刚度对结构抗裂能力及极限承载能力均有显著影响。提高填充块材抗压强度时结构极限承载能力显著提高。当填充块材抗压强度及弹性模量较低时,钢筋混凝土框格单元结构的变形能力很好。  相似文献   

15.
基于海绵城市理念,以废砖为骨料、稻壳灰作填充料制备渗水蓄水生态建筑材料。采用正交试验研究骨料粒径、稻壳灰掺量和水灰比对材料性能的影响,利用XRD、SEM分析了影响机理,同时对材料的植生效果进行初步研究。正交试验表明,细骨料用量是决定7 d抗压强度、渗透系数和吸水率的主要因素;水灰比对28 d抗压强度的影响最大;最优配合比为1.18~2.36 mm骨料用量60%,稻壳灰掺量7.5%,水灰比0.78,此时28 d抗压强度大于6.0 MPa,渗透系数大于3.0 cm/s,吸水率大于23.0%。植生试验结果显示,碱茅草和四季青可分别作为护坡及公共绿化的最佳选择。  相似文献   

16.
利用河道疏浚底泥制备泡沫混凝土,研究了石灰、粉煤灰和微硅粉部分代替水泥,以及外掺偏硅酸钠、水玻璃和生物炭对所制备的底泥基泡沫混凝土抗压强度、导热系数和吸水耐水性能的影响。结果表明,微硅粉的加入优化了孔隙分布,可诱发火山灰反应,改善底泥基泡沫混凝土的综合性能;外掺2%的大麦草生物炭(500℃)可使底泥基泡沫混凝土的抗压强度提高14.2%,导热系数降低4.78%;添加石灰、粉煤灰和偏硅酸钠降低了泡沫混凝土的综合性能;水玻璃对泡沫混凝土的性能影响不大。  相似文献   

17.
为拓宽稻壳灰和淤泥土等固废资源处理途径,基于传统水泥固化处理方法,提出稻壳灰-水泥固化处理淤泥土技术。通过室内击实、无侧限抗压强度(UCS)和电镜扫描(SEM)试验,分析稻壳灰-水泥土强度特性及微观机理。结果表明:稻壳灰对淤泥固化土强度增强效果显著,并且15%稻壳灰+8%水泥掺量效果最佳,稻壳灰加入显著提高淤泥固化土韧性,其破坏应变在3%~5%左右,变形系数E50与抗压强度近似呈线性递增关系,E50可取(19~50)qu。微观分析表明:水化硅酸钙生成是稻壳灰-水泥固化淤泥强度提高的主要来源,其填充孔隙、胶结作用使土体更加密实,提高强度。基于试验结果,提出了稻壳灰-水泥固化淤泥微观演变机制分析模型。  相似文献   

18.
谢琼  娄宗科 《混凝土》2008,(5):73-75
利用农业生产的废弃物--稻壳为骨料制备混凝土,研究了不同稻壳掺量混凝土的表观密度和抗压强度.结果表明:随着稻掺量的增大,混凝土表观密度和抗压强度逐渐降低.稻壳掺量达到13%后,其减小的速度明显放缓;稻壳混凝土抗压强度随水灰比增大而降低的幅度明显小于普通混凝土.  相似文献   

19.
Stabilization of residual soils is studied by chemically using cement and rice husk ash. Investigation includes the evaluation of such properties of the soil as compaction, strength, and X-ray diffraction. Test results show that both cement and rice husk ash reduce the plasticity of soils. In term of compactability, addition of rice husk ash and cement decreases the maximum dry density and increases the optimum moisture content. From the viewpoint of plasticity, compaction and strength characteristics, and economy, addition of 6–8% cement and 10–15% rice husk ash is recommended as an optimum amount.  相似文献   

20.
为研究承重型横孔连锁混凝土砌块砌体的受压性能,设计了9组共54个砌体受压试件。砌体由BC240型、BH240型和BH290型三种块型砌块和三种强度砌筑砂浆制作,厚度分别为240、240、290mm,高度均为1030mm,高厚比分别为4.3、4.3、3.6。对砌体试件进行轴心受压试验,观察其裂缝发展规律和破坏特征,分析影响砌体受压性能的关键因素,得到了砌体的抗压强度。研究表明:承重型横孔连锁混凝土砌块砌体受压产生的横向拉应力和砂浆变形产生的附加横向拉应力导致砌块横肋破坏是砌体脆性破坏的主要原因,除了砂浆强度和砌块强度对砌体抗压强度影响较大外,竖肋占比和砌块构造也会影响砌体抗压强度;相近的砌块抗压强度和砂浆强度下,承重型横孔连锁混凝土砌块砌体的抗压强度低于竖孔砌块砌体的抗压强度;提出的抗压强度计算式可以较为准确地计算承重型横孔连锁混凝土砌块砌体的抗压强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号