首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Escherichia coli strain carrying either the secAcsR11 or delta secG::kan mutation is unable to grow at low temperature owing to cold-sensitive protein translocation but grows normally at 37 degree C. However, introduction of the two mutations into the same cells caused a severe defect in protein translocation and the cells were unable to grow at any temperature examined, indicating that secG is essential for the secAcsR11 mutant. The mutant SecA (csSecA) was found to possess a single amino acid substitution in the precursor-binding region and was defective in the interaction with the precursor protein. Furthermore, the membrane insertion of SecA and the membrane topology inversion of SecG, both of which took place upon the initiation of protein translocation, were significantly retarded even at 37 degree C, when csSecA was used instead of the wild-type SecA. The insertion of the wild-type SecA was also significantly defective when SecG-depleted membrane vesicles were used in place of SecG-containing ones. No insertion of csSecA occurred into SecG-depleted membrane vesicles. Examination of in vitro protein translocation at 37 degree C revealed that SecG is essential for csSecA-dependent protein translocation. We conclude that SecG and SecA undergo a coupled structure change, that is critical for efficient protein translocation.  相似文献   

2.
The secA gene of Streptomyces lividans was cloned using as probe a 57-mer oligonucleotide based on conserved sequences of the Escherichia coli secA and the Bacillus subtilis div genes. It encodes a protein of 946 amino acids (aa) with a deduced M(r) of 106,079, with high similarity to all known SecA proteins. All the previously described conserved motifs of SecA proteins were conserved in the S. lividans protein. The secA gene of S. lividans restored sensitivity to sodium azide in E. coli SecA4 (AzR) a mutant with an azide-resistant (ATPase defective) SecA protein. However, it did not complement the temperature-sensitive mutation in E. coli MM52 (SecAts) (a conditional lethal mutant defective in protein translocation) allowing only poor growth at the nonpermissive temperature. secA homologous sequences were present in 11 different species of Streptomyces and Nocardia.  相似文献   

3.
SecA is found in the cytosol and bound to the plasma membrane of Escherichia coli. Binding occurs either with high affinity at SecYEG or with low affinity to lipid. Domains of 65 and 30 kDa of SecYEG-bound SecA insert into the membrane upon interaction with preprotein and ATP. Azide blocks preprotein translocation, in vivo and in vitro, through interacting with SecA and preventing SecA deinsertion. This provides a measure of the translocation relevance of each form of SecA membrane association. We now report that azide acts exclusively on SecA that is cycling at SecYEG and has no effect on SecA lipid associations. SecA molecules recovered with sucrose gradient-purified inner membrane vesicles ("endogenous" SecA) support translocation at the same rate as "added" SecA molecules bound at SecYEG. Both endogenous and added SecA yield the same proteolytic fragments, which are distinct from those obtained from SecA once it has inserted into membranes at SecYEG or from SecA at lipidic sites. Endogenous and added SecA differ, however, in their resistance to urea extraction. The translocation supported by either endogenous or added SecA is blocked by azide or by antibody to SecY. We conclude that SecA functions in preprotein translocation only through cycling at SecYEG.  相似文献   

4.
We have found that azide-resistant mutants of Salmonella typhimurium and of other bacteria studied produce a substance which inactivates the azide. The production of this substance was proved by the demonstration of a satellite growth of azide-sensitive cells around colonies of azide-resistant mutants and by testing azide inactivating properties of culture filtrates of the azide-resistant strains. The same substance was found to be present in lower concentrations in culture filtrates of wild-type sensitive strains. In both cultures of sensitive strains, it was apparently produced by the resistant mutants and not by the sensitive cells. The substance does not pass across a dialysis membrane and is heat stable. It has a high molecular weight but is not a protein.  相似文献   

5.
Escherichia coli biotin ligase is a cytoplasmic protein which specifically biotinylates the biotin-accepting domains from a variety of organisms. This in vivo biotinylation can be used as a sensitive signal to study protein secretion and membrane protein insertion. When the biotin-accepting domain from the 1.3S subunit of Propionibacterium shermanii transcarboxylase (PSBT) is translationally fused to the periplasmic proteins alkaline phosphatase and maltose-binding protein, there is little or no biotinylation of PSBT in wild-type E. coli. Inhibition of SecA with sodium azide and mutations in SecB, SecD, and SecF, all of which slow down protein secretion, result in biotinylation of PSBT. When PSBT is fused to the E. coli inner membrane protein MalF, it acts as a topological marker: fusions to cytoplasmic domains of MalF are biotinylated, and fusions to periplasmic domains are generally not biotinylated. If SecA is inhibited by sodium azide or if the SecE in the cell is depleted, then the insertion of the MalF second periplasmic domain is slowed down enough that PSBT fusions in this part of the protein become biotinylated. Compared with other protein fusions that have been used to study protein translocation, PSBT fusions have the advantage that they can be used to study the rate of the insertion process.  相似文献   

6.
In Escherichia coli, precursor proteins are translocated across the cytoplasmic membrane by translocase. This multisubunit enzyme consists of a preprotein-binding and ATPase domain, SecA, and the SecYEG complex as the integral membrane domain. PrlA4 is a mutant of SecY that enables the translocation of preproteins with a defective, or missing, signal sequence. Inner membranes of the prlA4 strain efficiently translocate Delta8proOmpA, a proOmpA derivative with a non-functional signal sequence. Owing to the signal sequence mutation, Delta8proOmpA binds to the translocase with a lowered affinity and the recognition is not restored by the prlA4 SecY. At the ATP-dependent initiation of translocation, the binding affinity of SecA for SecYEG is lowered causing the premature loss of bound preproteins from the translocase. The prlA4 membranes, however, bind SecA with a much higher affinity than the wild-type, and during initiation, the SecA and preprotein remain bound at the translocation site allowing an improved efficiency of translocation. It is concluded that the prlA4 strain prevents the rejection of defective preproteins from the export pathway by stabilizing SecA at the SecYEG complex.  相似文献   

7.
E. coli cells harboring pCG169 containing the secD secF locus possessed SecA protein almost entirely in an integral membrane form in which it displayed normal protein translocation activity. These results imply that integral membrane SecA is the catalytically active form of this enzyme and that products of the secD secF locus regulate SecA association with the inner membrane. Protease and biotinylation accessibility studies of right side-out and inside-out membrane vesicles derived from this strain revealed that SecA was exposed to the periplasmic surface of the inner membrane. These studies suggest a model of bacterial protein secretion, whereby insertion of SecA into the inner membrane and its association with SecY/E/G promotes assembly of active protein-conducting channels comprised in part of integral membrane SecA protein, and products of the secD secF locus regulate the channel assembly-disassembly reaction by modulating the SecA insertion-deinsertion step.  相似文献   

8.
Domain interactions of the peripheral preprotein Translocase subunit SecA   总被引:1,自引:0,他引:1  
The homodimeric SecA protein is the peripheral subunit of the preprotein translocase in bacteria. It binds the preprotein and promotes its translocation across the bacterial cytoplasmic membrane by nucleotide modulated coinsertion and deinsertion into the membrane. SecA has two essential nucleotide binding sites (NBS; Mitchell & Oliver, 1993): The high-affinity NBS-I resides in the amino-terminal domain of the protein, and the low-affinity NBS-II is localized at 2/3 of the protein sequence. The nucleotide-bound states of soluble SecA were studied by site directed tryptophan fluorescence spectroscopy, tryptic digestion, differential scanning calorimetry, and dynamic light scattering. A nucleotide-induced conformational change of a carboxy-terminal domain of SecA was revealed by Trp fluorescence spectroscopy. The Trp fluorescence of a single Trp SecA mutant containing Trp775 decreased and increased upon the addition of NBS-I saturating concentrations of ADP or AMP-PNP, respectively. DSC measurements revealed that SecA unfolds as a two domain protein. Binding of ADP to NBS-I increased the interaction between the two domains whereas binding of AMP-PNP did not influence this interaction. When both NBS-I and NBS-II are bound by ADP, SecA seems to have a more compact globular conformation whereas binding of AMP-PNP seems to cause a more extended conformation. It is suggested that the compact ADP-bound conformation resembles the membrane deinserted state of SecA, while the more extended ATP-bound conformation may correspond to the membrane inserted form of SecA.  相似文献   

9.
The CtpA protein in the cyanobacterium Synechocystis 6803 is a C-terminal processing protease that is essential for the assembly of the manganese cluster of the photosystem II complex. When fused to different chloroplast-targeting transit peptides, CtpA can be imported into isolated spinach chloroplasts and is subsequently translocated into the thylakoid lumen. Thylakoid transport is mediated by the cyanobacterial signal peptide which demonstrates that the protein transport machinery in thylakoid membranes is functionally conserved between chloroplasts and cyanobacteria. Transport of CtpA across spinach thylakoid membranes is affected by both nigericin and sodium azide indicating that the SecA protein and a transthylakoidal proton gradient are involved in this process. Saturation of the Sec-dependent thylakoid transport route by high concentrations of the precursor of the 33-kDa subunit of the oxygen-evolving system leads to a strongly reduced rate of thylakoid translocation of CtpA which demonstrates transport by the Sec pathway. However, thylakoid transport of CtpA is affected also by excess amounts of the 23-kDa subunit of the oxygen-evolving system, though to a lesser extent. This suggests that the cyanobacterial protein is capable of also interacing with components of the deltapH-dependent route and that transport of a protein across the thylakoid membrane may not always be restricted to a single pathway.  相似文献   

10.
The nuclear psbY gene (formerly ycf32) encodes two distinct single-spanning chloroplast thylakoid membrane proteins in Arabidopsis thaliana. After import into the chloroplast, the precursor protein is processed to a polyprotein in which each "mature" protein is preceded by an additional hydrophobic region; we show that these regions function as signal peptides that are cleaved after insertion into the thylakoid membrane. Inhibition of the first or second signal cleavage reaction by enlargement of the -1 residues leads in each case to the accumulation of a thylakoid-integrated intermediate containing three hydrophobic regions after import into chloroplasts; a double mutant is converted to a protein containing all four hydrophobic regions. We propose that the overall insertion process involves (i) insertion as a double-loop structure, (ii) two cleavages by the thylakoidal processing peptidase on the lumenal face of the membrane, and (iii) cleavage by an unknown peptidase on the stromal face on the membrane between the first mature protein and the second signal peptide. We also show that this polyprotein can insert into the thylakoid membrane in the absence of stromal factors, nucleoside triphosphates, or a functional Sec apparatus; this effectively shows for the first time that a multispanning protein can insert posttranslationally without the aid of signal recognition particle, SecA, or the membrane-bound Sec machinery.  相似文献   

11.
Escherichia coli preprotein translocase comprises a membrane-embedded hexameric complex of SecY, SecE, SecG, SecD, SecF and YajC (SecYEGDFyajC) and the peripheral ATPase SecA. The energy of ATP binding and hydrolysis promotes cycles of membrane insertion and deinsertion of SecA and catalyzes the movement of the preprotein across the membrane. The proton motive force (PMF), though not essential, greatly accelerates late stages of translocation. We now report that the SecDFyajC domain of translocase slows the movement of preprotein in transit against both reverse and forward translocation and exerts this control through stabilization of the inserted form of SecA. This mechanism allows the accumulation of specific translocation intermediates which can then complete translocation under the driving force of the PMF. These findings establish a functional relationship between SecA membrane insertion and preprotein translocation and show that SecDFyajC controls SecA membrane cycling to regulate the movement of the translocating preprotein.  相似文献   

12.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

13.
14.
Syd is an Escherichia coli cytosolic protein that interacts with SecY. Overproduction of this protein causes a number of protein translocation-related phenotypes, including the strong toxicity against the secY24 mutant cells. Previously, this mutation was shown to impair the interaction between SecY and SecE, the two fundamental subunits of the membrane-embedded part of protein translocase. We have now studied in vitro the mechanisms of the Syd-directed inhibition of protein translocation. Pro-OmpA translocation into inverted membrane vesicles (IMVs) prepared from the secY24 mutant cells as well as the accompanied translocation ATPase activity of SecA were rapidly inhibited by purified Syd protein. In the course of protein translocation, high affinity binding of preprotein-bearing SecA to the translocase on the IMV is followed by ATP-driven insertion of the 30-kDa SecA segment into the membrane. Our experiments using 125I-labeled SecA and the secY24 mutant IMV showed that Syd abolished both the high affinity SecA binding and the SecA insertion. Syd was even able to release the inserted form of SecA that had been stabilized by a nonhydrolyzable ATP analog. Syd affected markedly the proteolytic digestion pattern of the IMV-integrated SecY24 protein, suggesting that Syd exerts its inhibitory effect by interacting directly with the SecY24 protein. In accordance with this notion, a SecY24 variant with a second site mutation (secY249) resisted the Syd action both in vivo and in vitro. Thus, Syd acts against the SecY24 form of translocase, in which SecY-SecE interaction has been compromised, to exclude the SecA motor protein from the SecYE channel complex.  相似文献   

15.
The SecA protein is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. The secA gene from Bacillus subtilis was cloned and expressed in E. coli under the control of the lac or trc promoter. The temperature-sensitive growth and secretion defects of various E. coli secA mutants were complemented by the B. subtilis SecA protein, provided the protein was expressed at moderate levels. Under overproduction conditions, no complementation was observed. One of the main features of the SecA protein is the translocation ATPase activity which, together with the protonmotive force, drives the movement of proteins across the plasma membrane. A putative ATP-binding motif can be identified in the SecA protein resembling the consensus Walker A type motif. Replacement of a lysine residue at position 106, which corresponds to an invariable amino acid residue, in the consensus motif by asparagine (K106N) resulted in the loss of the ability of the B. subtilis SecA protein to complement the growth and secretion defects of E. coli secA mutants. In addition, the presence of the K106N SecA protein interfered with protein translocation, most likely at an ATP-requiring step. We conclude that lysine 106 is part of the catalytic ATP-binding site of the B. subtilis SecA protein, which is required for protein translocation in vivo.  相似文献   

16.
Two distinct protein targeting pathways can direct proteins to the Escherichia coli inner membrane. The Sec pathway involves the cytosolic chaperone SecB that binds to the mature region of pre-proteins. SecB targets the pre-protein to SecA that mediates pre-protein translocation through the SecYEG translocon. The SRP pathway is probably used primarily for the targeting and assembly of inner membrane proteins. It involves the signal recognition particle (SRP) that interacts with the hydrophobic targeting signal of nascent proteins. By using a protein cross-linking approach, we demonstrate here that the SRP pathway delivers nascent inner membrane proteins at the membrane. The SRP receptor FtsY, GTP and inner membranes are required for release of the nascent proteins from the SRP. Upon release of the SRP at the membrane, the targeted nascent proteins insert into a translocon that contains at least SecA, SecY and SecG. Hence, as appears to be the case for several other translocation systems, multiple targeting mechanisms deliver a variety of precursor proteins to a common membrane translocation complex of the E.coli inner membrane.  相似文献   

17.
We have utilized processing-defective derivatives of the outer membrane maltoporin, LamB, to study protein trafficking functions in the cell envelope of Escherichia coli. Our model proteins contain amino acid substitutions in the consensus site for cleavage by signal peptidase. As a result, the signal sequence is cleaved with reduced efficiency, effectively tethering the precursor protein to the inner membrane. These mutant porins are toxic when secreted to the cell envelope. Furthermore, strains producing these proteins exhibit altered outer membrane permeability, suggesting that the toxicity stems from some perturbation of the cell envelope (J. H. Carlson and T. J. Silhavy, J. Bacteriol. 175:3327-3334, 1993). We have characterized a multicopy suppressor of the processing-defective porins that appears to act by a novel mechanism. Using fractionation experiments and conformation-specific antibodies, we found that the presence of this multicopy suppressor allowed the processing-defective LamB precursors to be folded and localized to the outer membrane. Analysis of the suppressor plasmid revealed that these effects are mediated by the presence of a truncated derivative of the polytopic inner membrane protein, TetA. The suppression mediated by TetA' is independent of the CpxA/CpxR regulon and the sigma E regulon, both of which are involved in regulating protein trafficking functions in the cell envelope.  相似文献   

18.
SecA binds to the inner membrane of Escherichia coli through low affinity lipid interactions or with high affinity at SecYEG, the integral domain of preprotein translocase. Upon addition of preprotein and nucleotide, a 30 kDa domain of SecYEG-bound SecA is protected from proteolysis via membrane insertion. Such protection could result from some combination of insertion into the lipid phase, into a proteinaceous environment or across the membrane. To assess the exposure of SecYEG-bound SecA to membrane lipids, a radiolabeled, photoactivatable and lipid-partitioning crosslinker, 3-trifluoromethyl-3-(m[125I]iodophenyl) diazirine benzoic acid ester, was incorporated into inner membrane vesicles. The 30 kDa domain of SecYEG-bound SecA, inserted into the membrane in response to translocation ligands, is 18-fold less labeled than SecY, which is labeled effectively. In contrast, incorporation of the purified 30 kDa SecA fragment into crosslinker-containing detergent micelles or addition of detergent to crosslinker-containing membranes bearing the protease-protected SecA domain readily allows for labeling of this domain. We propose that the protease-inaccessible 30 kDa SecA domain is shielded from the fatty acyl membrane phase by membrane-spanning SecYEG helices and/or is largely exposed to the periplasm.  相似文献   

19.
An oligodeoxynucleotide-dependent method to generate nascent polypeptide chains was adopted for use in a cell-free translation system prepared from Escherichia coli. In this way, NH2-terminal pOmpA fragments of distinct sizes were synthesized. Because most of these pOmpA fragments could be covalently linked to puromycin, precipitated with cetyltrimethylammonium bromide, and were enriched by sedimentation, they represent a population of elongation-arrested, ribosome-associated nascent chains. Translocation of these nascent pOmpA chains into inside-out membrane vesicles of E. coli required SecA and (depending on size) SecB. Whereas their translocation was strictly dependent on the H+-motive force of the vesicles, no indication for the involvement of the bacterial signal recognition particle was obtained. SecA and SecB, although required for translocation, did not mediate binding of the ribosome-associated pOmpA to membrane vesicles. However, SecA and SecB cotranslationally associated with nascent pOmpA, since they could be co-isolated with the ribosome-associated nascent chains and as such catalyzed translocation subsequent to the release of the ribosome. These results indicate that in E. coli, SecA also functionally interacts with preproteins before they are targeted to the translocase of the plasma membrane.  相似文献   

20.
SecA undergoes conformational changes during translocation, inserting domains into and across the membrane or enhancing the protease resistance of these domains. We now show that some SecA bound at SecYEG is accessible from the periplasm to a membrane-impermeant probe in cells with a permeabilized outer membrane but an intact plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号