首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
曲彬  张金林  贺春林 《材料导报》2015,29(12):28-31, 53
利用直流反应溅射技术在不锈钢和硅基体上沉积了TiN纳米晶薄膜,采用场发射扫描电镜(FESEM)、X射线衍射(XRD)和电化学阻抗谱(EIS)技术研究了薄膜的表面形貌、相结构和耐蚀性与偏压的关系。结果表明,TiN薄膜的表面结构明显取决于所施加的偏压,适当提高偏压有利于获得细小、均匀、致密和光滑的膜层。XRD分析发现,TiN薄膜为面心立方结构,其择优取向为(111)面。实验显示,对应0V和-35V偏压的薄膜为欠化学计量比的,而偏压增加至-70V和-105V时的薄膜为化学计量比的TiN。EIS结果表明,较高偏压下的TiN薄膜几乎在整个频率范围内均表现为容抗特征,其阻抗模值明显高于低偏压下的膜层,这主要与较高偏压下的薄膜具有相对致密的微结构有关。较低偏压的TiN薄膜因结构缺陷较多其耐蚀性低于基体不锈钢。EIS所揭示的薄膜结构特征与FESEM观测结果一致。可见,减少穿膜针孔等结构缺陷有利于改善反应溅射TiN纳米晶薄膜耐蚀性。  相似文献   

2.
《Vacuum》2012,86(4):415-421
In this work, Ti–Cu–N hard nanocomposite films were deposited on 304 stainless steel (SS) substrate by using pulse biased arc ion plating system with Ti–Cu alloy target. The effects of negative substrate pulse bias voltages on chemical composition, structure, morphology and mechanical properties were investigated. The composition and structure of these films was found to be dependent on the pulse bias, whereas the pulse biases put little influence on hardness of these films. The XPS spectra of Cu 2p showed that obtained peak values correspond to pure metallic Cu. Cu content in Ti–Cu–N nanocomposite films changed with pulse bias voltage. In addition, X-ray diffraction analysis showed that a pronounced TiN (111) texture is observed under low pulse bias voltage while it changed to TiN (220) orientation under high pulse bias voltage. Surface roughness of the Ti–Cu–N nanocomposite films achieved to the minimum value of 0.11 μm with the negative pulse bias voltage of −600 V. The average grain size of TiN was less than 17 nm. The mechanical properties of Ti–Cu–N hard films investigated by nanoindentation revealed that the hardness was about 22–24 GPa and the hardness enhancement was not obtained.  相似文献   

3.
X.Q. Wang  Y.H. Zhao  B.H. Yu  J.Q. Xiao  F.Q. Li 《Vacuum》2011,86(4):415-421
In this work, Ti–Cu–N hard nanocomposite films were deposited on 304 stainless steel (SS) substrate by using pulse biased arc ion plating system with Ti–Cu alloy target. The effects of negative substrate pulse bias voltages on chemical composition, structure, morphology and mechanical properties were investigated. The composition and structure of these films was found to be dependent on the pulse bias, whereas the pulse biases put little influence on hardness of these films. The XPS spectra of Cu 2p showed that obtained peak values correspond to pure metallic Cu. Cu content in Ti–Cu–N nanocomposite films changed with pulse bias voltage. In addition, X-ray diffraction analysis showed that a pronounced TiN (111) texture is observed under low pulse bias voltage while it changed to TiN (220) orientation under high pulse bias voltage. Surface roughness of the Ti–Cu–N nanocomposite films achieved to the minimum value of 0.11 μm with the negative pulse bias voltage of ?600 V. The average grain size of TiN was less than 17 nm. The mechanical properties of Ti–Cu–N hard films investigated by nanoindentation revealed that the hardness was about 22–24 GPa and the hardness enhancement was not obtained.  相似文献   

4.
纳米结构TiN薄膜的制备及其摩擦学性能   总被引:4,自引:0,他引:4  
在室温条件下,用磁过滤等离子体装置在单晶硅基底上制备了纳米结构TiN薄膜分析了薄膜的表面形貌、晶体结构,测量了TiN薄膜的硬度,研究了基底偏压对薄膜结构性能的影响.结果表明,用此方法制备的TiN薄膜表面平整光滑,颗粒尺寸为50~80 nm;随着基底偏压的增大薄膜发生(111)面的择优取向随着偏压的提高,薄膜的颗粒度稍有增大,摩擦系数增大,偏压提高,晶面在较密排的(111)面有强烈的择优取向,硬度也有所增大.在其它条件相同的情况下载荷越大,摩擦系数越大.不起用磁过滤等离子体法制备的纳米结构TiN薄膜具有较低的摩擦系数(0.14~0.25).  相似文献   

5.
In the present study, authors report on the effect that substrate bias voltage has on the microstructure and mechanical properties of (Ti, Al)N hard coatings deposited with cathodic arc evaporation (CAE) technique. The coatings were deposited from a Ti 0· 5Al 0· 5 powder metallurgical target in a reactive nitrogen atmosphere at three different bias voltages: U B ?=??? 25, ?50 and ?100 V. The coatings were characterized in terms of compositional, microstructural and mechanical properties. Microstructure of the coatings was investigated with the aid of X-ray diffraction in glancing angle mode, which revealed information on phase composition, crystallite size, stress-free lattice parameter and residual stress. Mechanical properties were deduced from nano-indentation measurements. The residual stress in all the coatings was compressive and increased with increasing bias voltage in a manner similar to that reported in literature for Ti–Al–N coatings deposited with CAE. The bias voltage was also found to significantly influence the phase composition and crystallite size. At ?25 V bias voltage the coating was found in single phase fcc-(Ti, Al)N and with relatively large crystallites of ~ 9 nm. At higher bias voltages (?50 and ?100 V), the coatings were found in dual phase fcc-(Ti, Al)N and fcc-AlN and the size of crystallites reduced to approximately 5 nm. The reduction of crystallite size and the increase of compressive residual stress with increasing bias voltage both contributed to an increase in hardness of the coatings.  相似文献   

6.
The structure and residual stresses of TiN films deposited by arc ion plating (AIP) on a steel substrate were investigated using a synchrotron radiation system that emits ultra-intense X-rays. In a previous study, the crystal structures of TiN films deposited by AIP were found to be strongly influenced by the bias voltage. When high bias voltages were used, TiN films that were approximately 200 nm thickness had a preferred orientation of {110}, whereas TiN films that were approximately 600 nm thickness has a multilayer film orientation of {111}/{110}. In this present study, the two-tilt method was used to evaluate the residual stresses in TiN films by measuring lattice strains in two directions determined by the crystal orientation. Residual stresses in 600-nm-thick as-deposited TiN films were found to be −10.0 GPa and −8.0 GPa for {111}- and {110}-textured layers, respectively, while they were −8.0 GPa for {110}-textured layers in 200-nm-thick as-deposited TiN films. Residual stresses of both films relaxed to thermal stress levels upon annealing.  相似文献   

7.
Nanocomposite TiSiN films have been deposited on M2 tool steel substrates using TiSi alloy as target by a dual cathodic arc plasma deposition (CAPD) system. The influences of bias voltages on the microstructure, mechanical and tribological properties of the films were investigated. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction techniques were employed to analyse the microstructure, grain size and residual stress. Nano-indentation and tribometer testers were used to measure the mechanical and tribological properties of nanocomposite TiSiN thin films. The results showed that the hardness of the films ranged from 25 to 37 GPa, which were higher than that of TiN (21 GPa). The coefficient of friction of the TiSiN thin films was more stable but was higher than that of TiN when wear against both Cr steel and WC-Co ball, respectively. When encountered with both Cr steel and WC-Co ball of the counter ball, the tribological mechanisms of TiSiN thin films are adhesive and abrasion wears, respectively. It has been found that the microstructure, mechanical and wear properties of the films were correlated to bias voltage, grain size, and amorphous Si3N4 nanocomposite formed in film structure, resulting in a superhard TiSiN coating.  相似文献   

8.
Nanocrystalline TiN thin films were deposited on glass substrate by d.c. magnetron sputtering. The microstructural characteristics of the thin films were characterized by XRD, FE-SEM and AFM. XRD analysis of the thin films, with increasing thickness, showed the (200) preferred orientation up to 1·26 μm thickness and then it transformed into (220) and (200) peaks with further increase in thickness up to 2·83 μm. The variation in preferred orientation was due to the competition between surface energy and strain energy during film growth. The deposited films were found to be very dense nanocrystalline film with less porosity as evident from their FE-SEM and AFM images. The surface roughness of the TiN films has increased slightly with the film thickness as observed from its AFM images. The mechanical properties of TiN films such as hardness and modulus of elasticity (E) were investigated by nanoindentation technique. The hardness of TiN thin film was found to be thickness dependent. The highest hardness value (24 GPa) was observed for the TiN thin films with less positive micro strain.  相似文献   

9.
The effects of substrate bias power on the microstructure, physical and electrical properties of thin Ti films prepared by ionized physical vapor deposition (I-PVD) process were studied. The influence of Ti underlayer with substrate bias power ranging from 0 to 400 W on the subsequent TiN/AlCu films deposited by conventional PVD process in a multilayer structure was further investigated. Decreasing substrate bias power led: (1) better Ti(002) texture, smoother surface, and lower resistivity in Ti films, and (2) better Al(111) texture, narrower grain size distribution, smoother final surface, better-defined TiN/AlCu interface, and lower residual stress in AlCu alloy films in the corresponding Ti/TiN/AlCu stacks. In both cases, lower substrate bias power resulted in films with desirable microstructures and properties, compared to higher bias powers, for use as Al-based interconnects in IC manufacturing.  相似文献   

10.
W.C. Lang  J.Q. Xiao  J. Gong  R.F. Huang 《Vacuum》2010,84(9):1111-1117
Cathode spot motion and macroparticles (MPs) reduction on related films are the two main issues in the application of the vacuum arc deposition (VAD). In the present work, an axisymmetric magnetic field (AMF) was applied to the cathode surface to investigate the influence of the AMF on the cathode spot motion and the MPs reduction on TiN films. The results show that the AMF affected the cathode spot motion by redistributing the dense plasma connected with the initiation of the new spot. With increasing AMF, there is an increasing tendency for the cathode spot to rotate and drift toward the cathode target edge. Based on the results of FEM simulation and the physical mechanism of the cathode spot discharge, the mechanism of the cathode spot motion in the AMF was discussed. The morphology, detailed size distribution, and roughness of the resultant TiN films were systematically investigated. Fewer and smaller MPs ejection is observed with an increase in the transverse component of AMF. The effect of the AMF on the MPs reduction on TiN films was discussed, and the results were compared with the theoretical predictions.  相似文献   

11.
采用电弧离子镀的方法,通过改变脉冲偏压幅值在M2高速钢表面制备了TiN/TiAlN多层薄膜,研究了脉冲电压幅值TiN/TiAlN多层薄膜微观结构和性能的变化。随着脉冲偏压幅值的增加,薄膜表面的大颗粒数目明显减少。EDX结果表明,脉冲偏压幅值的增加还引起Al/Ti原子比的降低。TiN/TiAlN多层薄膜主要以(111)晶...  相似文献   

12.
利用反应射频磁控溅射技术,通过对基体施加负偏压溅射ZnO薄膜,探讨了固定偏压下ZnO薄膜的表面形貌随沉积时间的演化以及不同偏压对ZnO薄膜表面形貌的影响. 研究结果表明,在-100V的偏压下,随着沉积时间的增加,ZnO薄膜的表面岛尺寸不断减小,密度逐渐变大. ZnO在基片表面成核过程中的本征缺陷成核阶段和轰击缺陷成核阶段的生长指数分别为(0.45±0.03)和(0.22±0.04),低速率成核过程基本消失;随着偏压增大,表面岛的尺寸变大,表面起伏增加. 偏压不但可以改变ZnO薄膜的成核和生长过程,而且影响薄膜的晶体取向.  相似文献   

13.
为了揭示偏压对溅射态Fe-N薄膜磁学行为的影响规律及机理,采用直流磁控溅射工艺在不同偏压下制备了Fe-N薄膜.利用掠入射X射线衍射、小角X射线散射技术和振动样品磁强计研究了薄膜的相结构、厚度、表面粗糙度以及磁性能.结果表明,增加偏压有利于薄膜中非晶的形成,且随着偏压的增大,薄膜的厚度增加,表面粗糙度降低.Fe-N薄膜的磁性能表明,随着偏压的增加,薄膜的饱和磁化强度和矫顽力均有不同程度的减小.偏压的增加导致Fe-N薄膜由晶态向非晶态转变,从而引起磁性能的改变.  相似文献   

14.
The nanostructural evolution during heat treatments of DC magnetron-sputtered Cu films deposited at different substrate bias voltages was experimentally studied. A growth chamber equipped with two magnetrons and Kapton windows for in-situ X-ray diffraction was mounted on a six-circle goniometer at a synchrotron beam line. Using Bragg-Brentano X-ray diffraction, the grain size, the texture, and the lattice constant were monitored during thermal annealing. Increasing the substrate bias voltage, the grain growth rate lowered, and the change in texture with time became smaller due to a decrease in the defect concentration. Furthermore, the grain size in the as-deposited films decreased with increasing bias voltage. The activation energy for grain growth was, within experimental errors, the same in all the films.  相似文献   

15.
In this study, (Cd1?xBix)S thin films were successfully deposited on suitably cleaned glass substrate at 60 °C temperature, using the chemical bath deposition technique. After deposition, the films were also annealed at 400 °C for 2 min in air. The structural properties of the deposited films were characterized using X-ray diffraction and AFM. Formation of cubic structure with preferential orientation along the (111) plane was confirmed together with BiS second phase from structural analysis. The interplanar spacing, lattice constant, and crystallite size of (Cd1?xBix)S thin films were calculated by the XRD. The crystallite size of the un-doped CdS thin films was found to be 7.84 nm, which increased to 11.1 nm with increasing Bi content from 0 to 10 %. The surface roughness of the films was measured by AFM studies. The photoluminescence spectra were observed at red shifted band edge peak with increasing doping concentration of Bi from 0 to 5 % in the un-doped CdS thin films. The optical properties of the films are estimated using optical absorption and transmission spectra in the range of 400–800 nm using UV–VIS spectrophotometer. The optical band gap energy of the films was found to be decreased from 2.44 to 2.23 eV with the Bi content being from 0 to 5 %. After annealing, the band gap of these films further decreased.  相似文献   

16.
电弧离子镀膜层中"大颗粒"的存在,降低了膜层质量,限制了其进一步应用.采用俄罗斯UVN 0.5D2I离子束辅助沉积电弧离子镀设备,对高速钢W18Cr4V上沉积的TiN膜层进行了氮离子束轰击.结果表明:TiN膜层表面"大颗粒"完全消失,凹坑浅而平整,粗糙度降低.膜层中较软的Ti和Ti2N向TiN转变,TiN(111)取向逐渐减弱,而(200)取向逐渐增强.膜层的显微硬度由原来的1 980 HV1N升高到2 310HV1N.  相似文献   

17.
Titanium nitride (TiN) thin films were prepared by reactive DC magnetron sputtering under different nitrogen flow rates and at constant substrate temperature as well as at constant nitrogen flow rate and at different substrate temperatures. Photoacoustic measurement of the thermal properties of the films revealed that the thermal diffusivity and thermal conductivity of the TiN thin films are significantly lower than the bulk values and that the grain size of the films has substantial influence on the thermal properties of TiN thin films. The thermal conductivity of the films decreases with increasing nitrogen flow rates and increases with increasing substrate temperature. The above opposing behaviour in the thermal properties is found to be related to the microstructure, especially, the grain size of the films.  相似文献   

18.
Cu-Zn掺杂对TiN复合膜层组织性能的调制   总被引:1,自引:0,他引:1  
利用磁控溅射方法在不锈钢表面沉积了Cu-Zn掺杂TiN复合膜, 研究不同的Cu、Zn含量对膜层结构和性能(硬度、耐磨性能以及耐腐蚀性能)的影响. 结果表明, 掺杂的Cu、Zn可以阻止TiN晶粒生长, 随掺杂量增加TiN晶粒细化, Cu、Zn含量比较高时由于金属相长大而使膜层组织粗化. 当Cu≤10.38at%, Zn≤2.19at%时, TiN以(111)晶向择优生长, 且随掺杂量增加TiN(200)晶向逐渐增强. XPS结果表明膜层主要由TiN和单质Cu组成. 当掺杂Cu为10.38at%、Zn为2.19at%时,复合膜具有较高的硬度和较好的耐磨性能. 尽管耐腐蚀性能随着Cu、Zn含量的增加而下降, 但少量的Cu-Zn掺杂可显著提高膜层钝化能力.  相似文献   

19.
The physical properties of aluminum thin films depend strongly on their microstructure, which can be characterized using different techniques. In the present work, aluminum thin films—grown with different thickness on silicon substrates—were analyzed by atomic force microscopy (AFM) and grazing incidence x-ray techniques. The AFM was used as a high-resolution profilemeter for measuring edge angles, step heights, surface microstructure, and roughness. The structural properties (such as crystallographic orientation, crystallite size, and phase identification) were analyzed by grazing incidence x-ray diffraction. For small thickness, AFM images show small nucleation sites because of the short time of growth. Grain size grows as the thickness increases, and film morphology seems to be uniform with large grains. The AFM results of as-grown films show a linear increase in roughness along with thickness. Roughness values decrease with aging time after film preparation, until a constant value is observed. All films mainly have (111) orientation, and its intensity grows with film thickness, with respect to the (200) and (220) peaks. As the film thickness increases, the surface stress decreases.  相似文献   

20.
This paper reports on the first study of physical and mechanical properties of reactively sputtered chromium boron nitride coatings as a function of chemical composition, bias voltage and substrate temperature. Several sets of coatings were deposited by reactive unbalanced magnetron sputtering on Si(100) substrates. The chemical composition was deduced from X-ray photoelectron spectroscopy and Auger electron spectroscopy measurements, and was found to be influenced primarily by nitrogen flow rate. The phase composition was determined using X-ray diffraction in conjunction with spectroscopic ellipsometry. Atomic force microscopy was utilized to determine surface roughness and average surface grain size. Both surface roughness and surface grain size were largely independent of the nitrogen concentration and decreased with increasing bias voltage. The nanohardness and elastic modulus of each sample were measured by nanoindentation. The hardest films were produced using −150 V bias voltage and either very low (0.5-1 sccm) or very high (12-15 sccm) nitrogen flow rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号