首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 671 毫秒
1.
ZrC改性C/C-SiC复合材料的力学和抗烧蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用碳纤维针刺预制体, 用前驱体浸渍裂解(PIP)法分别制备了C/C-SiC和C/C-SiC-ZrC陶瓷基复合材料, 并对材料的微观结构、力学和烧蚀性能进行了分析对比。结果表明:利用该方法可制备出陶瓷相填充充分且分布均匀的复合材料。C/C-SiC-ZrC的面内弯曲强度、厚度方向的压缩强度、层间剪切强度均低于对应的C/C-SiC的。2 200 ℃、600 s氧化烧蚀后, C/C-SiC-ZrC的抗烧蚀性能显著优于C/C-SiC, 其线烧蚀率下降43.8%, 质量烧蚀率下降25%。在超高温阶段, C/C-SiC-ZrC复合材料基体的ZrC氧化生成的ZrO2溶于SiC氧化生成的SiO2中, 形成黏稠的二元玻璃态混合物, 有效阻止了氧化性气氛进入基体内部。   相似文献   

2.
采用先驱体转化(PIP)法制备了不同ZrC含量的(C/C)/SiC-ZrC复合材料,考察了ZrC含量对复合材料微观结构和抗烧蚀性能的影响。结果表明,氧乙炔烧蚀600 s后,(C/C)/SiC复合材料表面疏松,出现了较大的烧蚀凹坑;而(C/C)/SiC-ZrC复合材料表面相对较致密,被白色氧化物质覆盖,烧蚀率均有所降低。在较低的ZrC含量下,(C/C)/SiC-ZrC复合材料表面形成ZrO2-SiO2二元共熔体系氧化膜,有效抑制氧化性气氛向复合材料内部渗透,同时氧化物不断熔化和挥发,降低了复合材料烧蚀表面的温度;而当ZrC体积分数为12.4vol%时,在烧蚀过程中(C/C)/SiC-ZrC复合材料表面能形成一个ZrO2外层/SiO2内层的双层结构保护膜,ZrO2是一种优异的热障材料,且导热系数较低,使烧蚀过程中烧蚀区域热扩散降低,因此(C/C)/SiC-ZrC复合材料表现为较高的表面温度,但双层氧化膜阻挡有氧气氛进一步进入复合材料内部,使复合材料表现出优异的抗烧蚀性能。   相似文献   

3.
以聚合有机锆与聚碳硅烷组成的共溶前驱体为原料, 采用溶液浸渍-裂解(PIP)工艺制得了2D C/C-ZrC-SiC复合材料, 对复合材料的超高温烧蚀性能进行了研究. 利用SEM和XRD对烧蚀后材料的微观结构和物相组成进行分析, 探讨了复合材料的抗烧蚀机理. 结果表明, 复合材料的质量烧蚀率和线烧蚀率随着ZrC含量的增加先减小后增大. 其中ZrC含量为17.45vol%的复合材料具有最优的抗烧蚀性能, 即在表面温度为2200℃, 等离子焰烧蚀300s后, 其质量烧蚀率仅为1.77mg/s, 线烧蚀率为0.55μm/s. 研究发现, 材料表层的ZrC氧化生成的ZrO2溶于SiC氧化生成的SiO2中, 形成粘稠的二元玻璃态混合物, 有效阻止氧化性气氛进入基体内部, 对抗超高温烧蚀起到协同作用.  相似文献   

4.
采用涂刷法和浆料浸渍法在(C/C)/SiC复合材料基础上制备了(C/C)/ZrB2-SiC复合材料,采用微观分析和氧-乙炔烧蚀试验,并借助SEM、EDS等手段,研究三种材料的微观结构、抗烧蚀性能和抗烧蚀机制。结果表明:制备的(C/C)/ZrB2-SiC复合材料的抗烧蚀性能优于(C/C)/SiC复合材料,相比(C/C)/SiC复合材料,涂刷法制备的(C/C)/ZrB2-SiC复合材料600 s和1 000 s线烧蚀率下降33.3%和15.4%,质量烧蚀率下降51.5%和25.5%;浆料浸渍法制备的(C/C)/ZrB2-SiC复合材料600 s和1 000 s线烧蚀率下降20%和28.8%,质量烧蚀率下降42.4%和53.2%,其在高温阶段形成的ZrO2-SiO2玻璃态熔融层起到了抗氧化冲刷的作用,大幅提高其抗烧蚀性能。三种材料的烧蚀机制是热化学烧蚀、热物理烧蚀和机械剥蚀的综合作用。   相似文献   

5.
将SiC纤维毡与C纤维毡交替层叠, 通过针刺工艺制备(C-SiC)f/C预制体, 采用化学气相渗透与前驱体浸渍裂解复合工艺(CVI+PIP)制备(C-SiC)f/C复合材料, 研究(C-SiC)f/C复合材料H2-O2焰烧蚀性能。利用SEM、EDS和XRD对烧蚀前后材料的微观结构和物相组成进行分析, 探讨材料抗烧蚀机理。结果表明: (C-SiC)f/C复合材料表现出更优异的耐烧蚀性能。烧蚀750 s后, (C-SiC)f/C复合材料的线烧蚀率为1.88 μm/s, 质量烧蚀率为2.16 mg/s。与C/C复合材料相比, 其线烧蚀率降低了64.5%, 质量烧蚀率降低了73.5%; SiC纤维毡在烧蚀中心区表面形成的网络状保护膜可以有效抵御高温热流对材料的破坏; 在烧蚀过渡区和烧蚀边缘区形成的熔融SiO2能够弥合材料的裂纹、孔洞等缺陷, 阻挡氧化性气氛进入材料内部, 使材料表现出优异的抗烧蚀性能。  相似文献   

6.
通过控制沉积时间制备S5-C/ZrC-SiC、S15-C/ZrC-SiC、S30-C/ZrC-SiC和S50-C/ZrC-SiC等不同热解碳界面层厚度的复合材料,研究了不同热解碳界面层厚度C/ZrC-SiC复合材料的密度与微观组织、烧蚀性能的变化规律及其机理。结果表明:随着热解碳界面层厚度的增大,C/ZrC-SiC复合材料SiC基体含量、密度和气孔率不断降低,但是裂解ZrC基体的含量表现出先降低而后增大的变化规律。S30-C/ZrC-SiC复合材料20 s短时间氧乙炔烧蚀性能最优,其质量烧蚀率和线烧蚀率分别-0.84 mg/s和3.00 μm/s;但是S15-C/ZrC-SiC复合材料长时间循环60 s烧蚀性能最优,其质量烧蚀率和线烧蚀率分别为1.22 mg/s和3.80 μm/s。其原因是,C/ZrC-SiC复合材料20 s氧乙炔烧蚀作用机理主要为机械冲刷,而C/ZrC-SiC复合材料的第二次60 s氧乙炔烧蚀发生了由机械冲刷向热物理和热化学烧蚀机理的转变。  相似文献   

7.
为了研究烧蚀时间对C/C-SiC复合材料在高超声速富氧环境下烧蚀机制的影响规律,采用富氧环境下的高超声速烧蚀试验技术,对“化学气相渗透+先驱体浸渍裂解”混合工艺制备的针刺C/C-SiC复合材料动态烧蚀机制进行研究,并采用电子扫描显微镜观察烧蚀表面形貌。研究表明:在极端苛刻的高超声速富氧烧蚀环境下,C/C-SiC复合材料能够短时抵抗高温、高压、高超声速燃气射流的氧化工作环境。材料经高超声速富氧烧蚀10 s、20 s、30 s、40 s及50 s后的质量烧蚀率分别为0.021 g/s、0.025 g/s、0.027 g/s、0.026 g/s与0.034 g/s。C/C-SiC复合材料在高超声速富氧环境下的动态烧蚀行为主要受热化学烧蚀与机械剥蚀两种烧蚀机制共同作用。在初始阶段,SiO2保护膜的存在有效阻止了氧化性组分向基体内部的扩散,仅材料中心区域存在轻微热化学烧蚀;烧蚀试验中期,材料的烧蚀主要表现为热化学烧蚀与机械剥蚀联合作用,并由热化学烧蚀向机械剥蚀呈渐变性转变;烧蚀试验后期,基体的深度反应使得材料的烧蚀主要表现为纤维与基体的大面积片状剥落。   相似文献   

8.
为了提高炭/炭(C/C)复合材料的耐烧蚀性能,以孔隙率为38%的C/C复合材料为坯体,Zr-Cu混合粉末为熔渗剂,采用反应熔渗法制备了ZrC-Cu-C/C复合材料。通过氧-乙炔焰烧蚀实验,研究了熔渗剂成分对复合材料高温耐烧蚀性能的影响。利用XRD、SEM和EDS对烧蚀前后ZrC-Cu-C/C复合材料的相组成和微观结构进行了分析。结果表明:ZrC-Cu-C/C复合材料烧蚀前主要存在C、ZrC和Cu相,有微量Zr残余;烧蚀20s后表面主要存在炭基体、ZrO_2、CuO、Cu_2O及残余的ZrC和Cu。随熔渗剂中Zr含量增加,复合材料的线烧蚀率和质量烧蚀率均呈现先减小后增大的趋势,以60%Zr-Cu(质量分数)为熔渗剂制备的ZrC-Cu-C/C复合材料的抗烧蚀性能最佳,其线烧蚀率和质量烧蚀率分别为0.0018mm·s~(-1)和0.0013g·s~(-1)。ZrC-Cu-C/C复合材料的烧蚀机制为以C的升华、ZrO_2的熔化及Cu的蒸发和汽化为主的热物理烧蚀、ZrC和C氧化的热化学烧蚀以及高压热流冲刷引起的机械剥蚀的综合作用。  相似文献   

9.
ZrC-SiC-C/C复合材料的制备及其烧蚀性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以低密度C/C为坯体,采用前驱体浸渍裂解法(PIP)制备ZrC-SiC-C/C复合材料,研究其微观结构和烧蚀性能,并探讨其抗氧化烧蚀行为。结果表明:ZrC-SiC双元陶瓷相弥散分布于基体中,且各相界面结合良好;ZrC-SiC-C/C复合材料表现出良好的抗氧化烧蚀性能,经2 200℃/120s等离子体烧蚀后,其线烧蚀率和质量烧蚀率分别为1.67×10~(-4) mm·s~(-1)和6.04×10~(-4) g·s~(-1)。烧蚀温度为2 200℃时,材料表面形成的ZrO_2-SiO_2二元共熔体系氧化膜,有效抑制氧化性气氛向材料内部的渗透,减缓火焰对材料的剥蚀作用;烧蚀温度为2 500℃时,材料表面形成以表层为ZrO_2和底层为ZrO_2-SiO_2二元共熔体系的氧化膜,其中ZrO_2层阻挡热量向内部传递,有助于底层形成致密的氧化层。  相似文献   

10.
为明确C/SiC陶瓷基复合材料喷管在液体火箭发动机工作环境的烧蚀特性,采用先驱体浸渍-裂解(PIP)工艺制备得到3D C/SiC复合材料喷管,并对喷管进行多种工况环境下的地面热试车烧蚀考核。结果表明:制备得到的3D C/SiC复合材料喷管能够满足液体火箭发动机多种工况环境下抗烧蚀性能要求,喷管喉部线烧蚀率约为3.92×10-4 mm/s;热试车烧蚀实验后喷管入口圆柱段、收敛段、喉部及扩张段外型面均残留有大量白色物质SiO2,喉部局部出现烧蚀坑洞现象;C/SiC复合材料液体火箭发动机工作环境下的烧蚀机理为机械冲刷烧蚀和氧化烧蚀。  相似文献   

11.
以有机ZrC、ZrB2前驱体和聚碳硅烷的混合溶液为浸渍前驱体, 利用聚合物浸渍裂解法(PIP)制备了C/C-ZrC-SiC-ZrB2复合材料, 并对材料的微观形貌、弯曲和烧蚀性能进行了研究。研究结果表明: 利用该方法可制备出陶瓷相填充充分且分布均匀的C/C-ZrC-SiC-ZrB2复合材料。材料的弯曲强度为126.31 MPa, 断面有大量的纤维束拔出, 表现出良好的假塑性断裂模式。经过120 s氧–乙炔烧蚀, 材料无明显烧蚀, 其线烧蚀率和质量烧蚀率分别为–2.50×10-4 mm/s和–1.33×10-4 g/s。在材料表面不同区域形成不同的保护层, 不仅能够降低氧气和热流向材料内部扩散, 还具有弥补缺陷的作用, 使材料表现出优异的抗烧蚀性能。  相似文献   

12.
采用浆料浸渍法引入ZrB2微粉作为耐超高温相, 以炭纤维为增强体, 以热解炭和SiC为基体, 制备了ZrB2含量不同的耐超高温C/C-SiC-ZrB2复合材料; 通过电弧风洞考核材料的抗烧蚀性能, 通过XRD、SEM和EDS分析材料的烧蚀机理。结果表明: 在Ma 6电弧风洞条件下, C/C-SiC-ZrB2复合材料的抗烧蚀性能优于C/C-SiC, 且随着ZrB2含量的增加, 抗烧蚀性能随之提高; 在高温阶段形成的ZrO2-SiO2玻璃态熔融层起到了抗氧化烧蚀的作用。  相似文献   

13.
《材料科学技术学报》2019,35(12):2785-2798
Mosaic structure Zr C-SiC coatings were fabricated on low-density, porous C/C composites via thermal evaporation and an in-situ method. Zr C was packed in a typical lamellar mode, and the mosaic structure was formed by the deposition of Zr and Si atoms on the shallow surface of the porous C/C composites.Ablation analysis showed that the defects in the coatings originate from the boundary between the Zr C and holes created by the consumption of SiC at 2500?C. After ablation for 200 s at 3000?C, a dense ZrO_2 layer formed on the coating surface, and the defects were sealed owing to the continuous supply of ablative components. The mass and line ablation rates of the Zr C-SiC coatings were-0.46 ± 0.15 mg cm~(-2)·s~(-1) and-1.00± 0.04 μm s~(-1), respectively.  相似文献   

14.
本文以低密度C/C复合材料为坯体,有机锆聚合物为前驱体,采用聚合物浸渍裂解法(PIP)制备C/C-ZrC复合材料,并对其微观结构、力学性能、烧蚀性能以及烧蚀机理进行了研究。结果表明ZrC在材料内分布均匀,密度为2.05g·cm~(-3)的C/C-ZrC复合材料其弯曲强度为89.70MPa,呈脆性断裂。经氢-氧焰烧蚀150s后其线烧蚀率为-2.2×10~(-3)mm·s~(-1),质量烧蚀率为-1.0×10-3g·s~(-1),远低于密度为1.86g·cm~(-3)的C/C复合材料(线烧蚀率:4.4×10~(-3) mm·s~(-1),质量烧蚀率:7.5×10~(-4)g·s~(-1));在烧蚀的过程中,ZrC表现出优先氧化,同时生成的ZrO_2阻挡层能有效阻挡热量的传递和氧气的渗透,提高了材料的抗烧蚀性能。  相似文献   

15.
以碳纤维无纬布/碳纤维网胎叠层针刺预制体为增强体, 经化学气相渗透(CVI)联合沥青高压碳化(HPIC)工艺制备了热解碳+沥青碳双元基针刺C/C喉衬材料, 利用X射线断层扫描(μ-CT)和扫描电镜(SEM)表征了材料的微观结构, 采用等离子烧蚀试验考察了针刺喉衬材料X-Y纤维铺层面(0°)、Z向针刺面(90°)以及两者间过渡层面(23°、45°和68°)的烧蚀性能。结果表明, 采用CVI+HPIC组合工艺能使针刺材料达到高致密态, 获得了孔隙率仅为4%的C/C材料, 材料内部孔隙呈离散态分布, 其中98%的孔隙为小于20 μm的小孔。烧蚀结果显示, 针刺C/C材料不同区域的烧蚀性能存在差异, 从X-Y层面(0°)到Z向针刺面(90°), 其耐烧蚀性能呈先增强后减弱的趋势, 68°层面耐烧蚀性能最好, 线、质量烧蚀率分别为0.056 mm/s、0.050 g/s。烧蚀面纤维的排布是影响烧蚀性能的关键因素, 68°层面因形成的尖端烧蚀模式占比较高, 表现出最佳的耐烧蚀性能。  相似文献   

16.
采用前驱体浸渍热解(PIP)工艺制备了ZrC-SiC、ZrB2-ZrC-SiC和HfB2-HfC-SiC复相陶瓷基复合材料,复合材料中的超高温陶瓷相均呈现出亚微米/纳米均匀弥散分布的特征,对比研究了上述材料在大气等离子和高温电弧风洞考核环境中的超高温烧蚀行为.研究结果表明,超高温复相陶瓷基复合材料相比传统的未改性SiC...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号