首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The behaviour of Listeria monocytogenes and Staphylococcus aureus in vacuum-packed cooked ham slices treated with an electron beam and stored at 4, 7 and 10 °C was investigated. Cooked ham slices were inoculated with L. monocytogenes and S. aureus and electron beam treated at 2 and 3 kGy. After treatment, a long temperature-dependent death phase was observed, followed by growth at a slower rate than in untreated samples. Assuming a hypothetical load of 10 cells/g or cm2 of L. monocytogenes and S. aureus as an original contamination in an industrial situation, an E-beam treatment of vacuum-packed cooked ham slices at 2 kGy guarantees the microbiological safety of the product along its shelf life, even if a noticeable temperature (10 °C) abuse occur during its storage period. Likewise, the E-beam treatment gave rise to a substantial increase of the RTE cooked ham shelf life off-sensory features associated to the spoilage only were detected in non-treated samples (controls) after 8 and 18 days of storage at 10 °C and 7 °C, respectively.  相似文献   

2.
The effect of high-hydrostatic-pressure processing (HPP) on the survival of a 5-strain rifampicin-resistant cocktail of Listeria monocytogenes in Queso Fresco (QF) was evaluated as a postpackaging intervention. Queso Fresco was made using pasteurized, homogenized milk, and was starter-free and not pressed. In phase 1, QF slices (12.7 × 7.6 × 1 cm), weighing from 52 to 66 g, were surface inoculated with L. monocytogenes (ca. 5.0 log10 cfu/g) and individually double vacuum packaged. The slices were then warmed to either 20 or 40°C and HPP treated at 200, 400, and 600 MPa for hold times of 5, 10, 15, or 20 min. Treatment at 600 MPa was most effective in reducing L. monocytogenes to below the detection level of 0.91 log10 cfu/g at all hold times and temperatures. High-hydrostatic-pressure processing at 40°C, 400 MPa, and hold time ≥15 min was effective but resulted in wheying-off and textural changes. In phase 2, L. monocytogenes was inoculated either on the slices (ca. 5.0 log10 cfu/g; ON) or in the curds (ca. 7.0 log10 cfu/g; IN) before the cheese block was formed and sliced. The slices were treated at 20°C and 600 MPa at hold times of 3, 10, and 20 min, and then stored at 4 and 10°C for 60 d. For both treatments, L. monocytogenes became less resistant to pressure as hold time increased, with greater percentages of injured cells at 3 and 10 min than at 20 min, at which the lethality of the process increased. For the IN treatment, with hold times of 3 and 10 min, growth of L. monocytogenes increased the first week of storage, but was delayed for 1 wk, with a hold time of 20 min. Longer lag times in growth of L. monocytogenes during storage at 4°C were observed for the ON treatment at hold times of 10 and 20 min, indicating that the IN treatment may have provided a more protective environment with less injury to the cells than the ON treatment. Similarly, HPP treatment for 10 min followed by storage at 4°C was the best method for suppressing the growth of the endogenous microflora with bacterial counts remaining below the level of detection for 2 out of the 3 QF samples for up to 84 d. Lag times in growth were not observed during storage of QF at 10°C. Although HPP reduced L. monocytogenes immediately after processing, a second preservation technique is necessary to control growth of L. monocytogenes during cold storage. However, the results also showed that HPP would be effective for slowing the growth of microorganisms that can shorten the shelf life of QF.  相似文献   

3.
We investigated the formation of single and mixed species biofilms of Listeria monocytogenes strains EGD-e and LR-991, with Lactobacillus plantarum WCFS1 as secondary species, and their resistance to the disinfectants benzalkonium chloride and peracetic acid. Modulation of growth, biofilm formation, and biofilm composition was achieved by addition of manganese sulfate and/or glucose to the BHI medium. Composition analyses of the mixed species biofilms using plate counts and fluorescence microscopy with dual fluorophores showed that mixed species biofilms were formed in BHI (total count, 8-9 log10 cfu/well) and that they contained 1-2 log10 cfu/well more L. monocytogenes than L. plantarum cells. Addition of manganese sulfate resulted in equal numbers of both species (total count, 8 log10 cfu/well) in the mixed species biofilm, while manganese sulfate in combination with glucose, resulted in 1-2 log10 more L. plantarum than L. monocytogenes cells (total count, 9 log10 cfu/well). Corresponding single species biofilms of L. monocytogenes and L. plantarum contained up to 9 log10 cfu/well. Subsequent disinfection treatments showed mixed species biofilms to be more resistant to treatments with the selected disinfectants. In BHI with additional manganese sulfate, both L. monocytogenes strains and L. plantarum grown in the mixed species biofilm showed less than 2 log10 cfu/well inactivation after exposure for 15 min to 100 μg/ml benzalkonium chloride, while single species biofilms of both L. monocytogenes strains showed 4.5 log10 cfu/well inactivation and single species biofilms of L. plantarum showed 3.3 log10 cfu/well inactivation. Our results indicate that L. monocytogenes and L. plantarum mixed species biofilms can be more resistant to disinfection treatments than single species biofilms.  相似文献   

4.
The aim of this study was to verify the effectiveness of the commercially available anti-Listeria phage preparation LISTEXP100 in reducing Listeria monocytogenes on ready-to-eat (RTE) roast beef and cooked turkey in the presence or absence of the chemical antimicrobials potassium lactate (PL) and sodium diacetate (SD). Sliced RTE meat cores at 4 and 10 °C were inoculated with cold-adapted L. monocytogenes to result in a surface contamination level of 103 CFU/cm2. LISTEXTMP100 was applied at 107 PFU/cm2 and samples taken at regular time intervals during the RTE product's shelf life to enumerate viable L. monocytogenes. LISTEXP100 was effective during incubation at 4 °C with initial reductions of L. monocytogenes of 2.1 log10 CFU/cm2 and 1.7 log10 CFU/cm2, respectively, for cooked turkey and roast beef without chemical antimicrobials (there was no significant difference to the initial L. monocytogenes reductions in the presence of LISTEXTMP100 for cooked turkey containing PL and roast beef containing SD-PL). In the samples containing no chemical antimicrobials, the presence of phage resulted in lower L. monocytogenes numbers, relative to the untreated control, of about 2 log CFU/cm2 over a 28-day storage period at 4 °C. An initial L. monocytogenes cell reduction of 1.5 log10 CFU/cm2 and 1.7 log10 CFU/cm2, respectively, for cooked turkey and roast beef containing no chemical antimicrobials was achieved by the phage at 10 °C (abusive temperature). At this temperature, the L. monocytogenes cell numbers of samples treated with LISTEX™ P100 remained below those of the untreated control only during the first 14 days of the experiment for roast beef samples with and without antimicrobials. On day 28, the L. monocytogenes numbers on samples containing chemical antimicrobials and treated with LISTEXTMP100 stored at 4 and 10 °C were 4.5 log10 CFU/cm2 and 7.5 log10 CFU/cm2, respectively, for cooked turkey, and 1.2 log10 CFU/cm2 and 7.2 log10 CFU/cm2, respectively, for roast beef. In both cooked turkey samples with and without chemical antimicrobials stored at 10 °C, the phage-treated samples had significantly lower numbers of L. monocytogenes when compared to the untreated controls throughout the 28-day storage period (P < 0.0001). For roast beef and cooked turkey containing chemical antimicrobials treated with LISTEXTMP100 and stored at 4 °C, no more than a 2 log CFU/cm2 increase of L. monocytogenes was observed throughout the stated shelf life of the product. This study shows that LISTEXP100 causes an initial reduction of L. monocytogenes numbers and can serve as an additional hurdle to enhance the safety of RTE meats when used in combination with chemical antimicrobials.  相似文献   

5.
Listeria monocytogenes CCUG 15526 was inoculated at a concentration of approximately 7.0 log10 cfu/mL in milk samples with 0.3, 3.6, 10, and 15% fat contents. Milk samples with 0.3 and 3.6% fat content were also inoculated with a lower load of approximately 3.0 log10 cfu/mL. Inoculated milk samples were subjected to a single cycle of ultra-high-pressure homogenization (UHPH) treatment at 200, 300, and 400 MPa. Microbiological analyses were performed 2 h after the UHPH treatments and after 5, 8, and 15 d of storage at 4°C. Maximum lethality values were observed in samples treated at 400 MPa with 15 and 10% fat (7.95 and 7.46 log10 cfu/mL), respectively. However, in skimmed and 3.6% fat milk samples, complete inactivation was not achieved and, during the subsequent 15 d of storage at 4°C, L. monocytogenes was able to recover and replicate until achieving initial counts. In milk samples with 10 and 15% fat, L. monocytogenes recovered to the level of initial counts only in the milk samples treated at 200 MPa but not in the milk samples treated at 300 and 400 MPa. When the load of L. monocytogenes was approximately 3.0 log10 cfu/mL in milk samples with 0.3 and 3.6% fat, complete inactivation was not achieved and L. monocytogenes was able to recover and grow during the subsequent cold storage. Fat content increased the maximum temperature reached during UHPH treatment; this could have contributed to the lethal effect achieved, but the amount of fat of the milk had a stronger effect than the temperature on obtaining a higher death rate of L. monocytogenes.  相似文献   

6.
The effectiveness of electron beam irradiation and high pressure treatment for the sanitation of cold-smoked salmon from two points of view, microbial safety and shelf-life extension, was compared. From the response of L. monocytogenes INIA H66a to irradiation, a D value of 0.51 kGy was calculated. For samples stored at 5 °C, 1.5 kGy would be sufficient to attain a Food Safety Objective (FSO) of 2 log10cfu/g L. monocytogenes for a 35-day shelf-life, whereas 3 kGy would be needed in the case of a temperature abuse (5 °C + 8 °C). Pressurization at 450 MPa for 5 min was considered to be an insufficient treatment, since the FSO of 2 log10cfu/g L. monocytogenes was only attained for a shelf-life of 21 days at 5 °C. However, treatment at 450 MPa for 10 min achieved this FSO for samples held during 35 days at 5 °C, or during 21 days under temperature abuse (5 °C + 8 °C) conditions. Irradiation at 2 kGy kept the microbial population of smoked salmon below 6 log10cfu/g after 35 days at 5 °C, with negligible or very light changes in its odor. Pressurization at 450 MPa for 5 min also kept the microbial population below 6 log10cfu/g after 35 days at 5 °C and did not alter odor, but affected negatively the visual aspect of smoked salmon.  相似文献   

7.
Survival of Listeria monocytogenes on cooked bacon cubes (aw 0.910 ± 0.080), strips (aw 0.726 ± 0.054), and bits (aw 0.620 ± 0.038) was determined during a 25 week storage period at −20, 4.4, and 22 °C. Selective enrichment and subsequent enzyme-linked fluorescent antibody (ELFA) detection were used to asses survival on samples inoculated at ca. 1-log10 CFU/g (LI). Samples inoculated at ca. 5.5-log10 CFU/g (HI) were analyzed over time by direct plating on modified Oxford medium (MOX). The Baranyi model was fitted to the inactivation curves of HI samples using the DMFit program. At −20 °C, a decline of about 1-log10 CFU/g occurred on all HI cooked bacon types by 14 weeks, although most LI samples remained positive by the ELFA detection method for 25 weeks. At 4.4 and 22 °C, some strips and bits LI samples were negative for the pathogen within 3 weeks, and >1.5 log10 CFU/g reductions occurred on HI strips and bits by 8 weeks. Reductions on cubes at refrigeration and ambient temperature were ca. 0.5 log10 CFU/g, and cubes remained positive on LI samples for 25 weeks. Rate parameter estimates indicated that the population declined fastest on strips and bits at 22 °C compared to all other product and temperature combinations. This study demonstrates that cooked bacon does not support the growth of L. monocytogenes and that the pathogen gradually dies off during storage.  相似文献   

8.
Vacuum-packaged cooked poultry meat was treated at a range of pressures (400–600 MPa) and hold times (1, 2 and 10 min), followed by storage at 4°, 8° or 12 °C for up to 35 days. Weissella viridescens was found to be the dominant microorganism in the pressure-treated meat, constituting 100% of the microflora identified at 500 and 600 MPa. None of the pressure-treated samples had obvious signs of spoilage during the 35 day storage period, even when the Weissella count was >7 log10 cfu/g. Studies on a typical W. viridescens isolate showed it to be relatively pressure-resistant in poultry meat, with <1 log reduction in numbers after a treatment of 2 min at 600 MPa. Agar diffusion assays showed that the isolate also caused the inhibition of a number of Gram-positive and Gram-negative pathogens, including strains of Clostridium botulinum, Listeria monocytogenes, Bacillus cereus and Escherichia coli. The selection of a pressure-resistant organism, such as this Weissella sp. could be advantageous in extending the shelf-life, and also microbiological safety, of the cooked meat, as it could give protection in addition to the pressure treatment itself.  相似文献   

9.
In this study, a microbiological challenge test in three artificially contaminated retail mixed mayonnaise-based ready-to-eat salads stored at refrigerator temperatures (3 °C and 7 °C) for 48 h was carried out. Shrimp-tomato salad, smoked ham salad and garlic cheese salad were separately contaminated by a suspension of particular Listeria monocytogenes strains. The number of L. monocytogenes, Enterobacteriaceae, staphylococci and total plate count (CFU/g) was determined. Listeria monocytogenes growth potential in the salads was calculated and evaluated.A significant increase in total plate count and L. monocytogenes count throughout storage of all three investigated salads was found. Enterobacteriaceae levels were high at the beginning in all salads but significantly (p < 0.05) decreased throughout the experiment depending on the temperature.All investigated L. monocytogenes strains demonstrated growth at both temperatures but expressed different growth potential. Especially garlic cheese salad and smoked ham salad were able to support the growth of Listeria. Shrimp-tomato salad supported growth the least. The growth potential increased with the increasing temperature and exceeded 0.5 log10 CFU/g in many cases. If the potential for growth is > 0.5 log10 CFU/g, food products can potentially endanger human health. Reference strain (ATCC 7644) showed the least growth potential almost in all cases in comparison with strains isolated from frozen pollock loins and from thermally treated specialty sausage containing preservatives. To eliminate the occurrence of microbiological risks, the shelf-life of the studied salads was estimated.  相似文献   

10.
《Food microbiology》2005,22(1):47-52
Chicken leg quarters (180–230 g) were processed for 4 min in steam at 99°C and then in an air impingement oven for 24 min at an oven temperature of 232°C, an air velocity of 2 m/s, and a humidity of 60%. The cooked chicken leg quarters were sampled to measure for the end-point internal temperatures. Sampling size in each subgroup for the internal temperature measurements was determined based on a normal distribution at a confidence level of 95%. The process mean, range, and standard deviation at 95% confidence level were 73.9°C, 1.8°C, and 0.9°C, respectively, for the internal temperatures of the cooked chicken leg quarters. The process lethality was validated for up to 7  log10 cfu/g reductions of Listeria monocytogenes in the cooked chicken leg quarters and verified by an inoculation study in which the chicken leg quarters were injected with 0.1 ml of the culture per cm2 of the product surface area to contain 7–8 log10 cfu/g of L. monocytogenes. This paper provided an approach for process control, sampling, and validation to reduce pathogens in fully cooked poultry products.  相似文献   

11.
Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5°C, respectively). In cheese inoculated with 4 log10 cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log10 cfu/g in all treatments over 60 d. When inoculated with 5 log10 cfu/g at 3 mo of cheese age, L. monocytogenes counts in Cheddar cheese were also reduced during storage, but by less than 1.5 log10 cfu/g after 50 d. However, cheese with a 50% reduction in sodium without KCl had higher counts than full-sodium cheese at the end of 50 d of incubation at 4°C when inoculated at 3 mo. When inoculated at 8 mo postmanufacture, this trend was only observed in 50% reduced sodium with KCl, for cheese manufactured with both cultures. This enhanced survival for 50% reduced-sodium cheese was not seen when a higher incubation temperature (12°C) was used when cheese was inoculated at 3 mo of age and monitored for 27 d (no difference in treatments was observed at this incubation temperature). In the event of postprocessing contamination during later stages of ripening, L. monocytogenes was capable of survival in Cheddar cheese regardless of which culture was used, whether or not sodium had been reduced by as much as 50% from standard concentrations, or if KCl had been added to maintain the effective S/M of full-sodium Cheddar cheese.  相似文献   

12.
Anna Jofré  Narcís Grèbol 《LWT》2009,42(5):924-112
The food-borne pathogens Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Yersinia enterocolitica and Campylobacter jejuni, and the spoilage lactic acid bacteria (LAB), Escherichia coli and the yeast Debaryomyces hansenii were inoculated on slices of cooked ham, dry cured ham and marinated beef loin. During storage at 4 °C, L. monocytogenes and LAB increased up to 3.5 log units while the other species, unable to grow under refrigeration, continued at the spiking level. The application of a 600 MPa treatment effectively inactivated most of the microorganisms, the counts of which, except for LAB that increased in cooked ham and in beef loin, progressively decreased or maintained below the detection limit during the whole storage (120 days at 4 °C).  相似文献   

13.
Lauric arginate (LAE) at concentrations of 200 ppm and 800 ppm was evaluated for its effectiveness in reducing cold growth of Listeria monocytogenes in whole milk, skim milk, and Queso Fresco cheese (QFC) at 4°C for 15 to 28 d. Use of 200 ppm of LAE reduced 4 log cfu/mL of L. monocytogenes to a nondetectable level within 30 min at 4°C in tryptic soy broth. In contrast, when 4 log cfu/mL of L. monocytogenes was inoculated in whole milk or skim milk, the reduction of L. monocytogenes was approximately 1 log cfu/mL after 24 h with 200 ppm of LAE. When 800 ppm of LAE was added to whole or skim milk, the initial 4 log cfu/mL of L. monocytogenes was nondetectable following 24 h, and no growth of L. monocytogenes was observed for 15 d at 4°C. With surface treatment of 200 or 800 ppm of LAE on vacuum-packaged QFC, the reductions of L. monocytogenes within 24 h at 4°C were 1.2 and 3.0 log cfu/g, respectively. In addition, the overall growth of L. monocytogenes in QFC was decreased by 0.3 to 2.6 and by 2.3 to 5.0 log cfu/g with 200 and 800 ppm of LAE, respectively, compared with untreated controls over 28 d at 4°C. Sensory tests revealed that consumers could not determine a difference between QFC samples that were treated with 0 and 200 ppm of LAE, the FDA-approved level of LAE use in foods. In addition, no differences existed between treatments with respect to flavor, texture, and overall acceptability of the QFC. Lauric arginate shows promise for potential use in QFC because it exerts initial bactericidal activity against L. monocytogenes at 4°C without affecting sensory quality.  相似文献   

14.
Effects of rapid chilling of carcasses (at − 31 °C in the first 3 h of chilling, and then at 2–4 °C) and earlier deboning (8 h post-mortem), compared to rapid (till 24 h post-mortem) and conventional chilling (at 2–4 °C, till 24 h post-mortem), on quality characteristics of pork M. semimebranosus and cooked ham were investigated. Quality measurements included pH value, colour (CIEL*a*b* values) and total aerobic count of M. semimebranosus, as well as sensory (colour, juiciness, texture, and flavour), physical (pH value, colour – CIEL*a*b* values and texture – Warner–Bratzler shear and penetration forces) and chemical (protein, total fat, and moisture content) characteristics of cooked ham. The cooked ham was manufactured from pieces of M. semimebranosus with ultimate lightness (CIEL* value) lower than 50. Rapid chilling and earlier deboning significantly increased quantity of M. semimebranosus desirable for cooked ham manufacturing. Earlier start of pork fabrication did not affect important quality characteristics of cooked ham.  相似文献   

15.
The objectives of this study were to examine and model the probability of growth of Listeria monocytogenes in cooked salmon containing salt and smoke (phenol) compound and stored at various temperatures. A growth probability model was developed, and the model was compared to a model developed from tryptic soy broth (TSB) to assess the possibility of using TSB as a substitute for salmon. A 6-strain mixture of L. monocytogenes was inoculated into minced cooked salmon and TSB containing 0–10% NaCl and 0–34 ppm phenol to levels of 102–3 cfu/g, and the samples were vacuum-packed and stored at 0-–25 °C for up to 42 days. A total 32 treatments, each with 16 samples, selected by central composite designs were tested. A logistic regression was used to model the probability of growth of L. monocytogenes as a function of concentrations of salt and phenol, and storage temperature. Resulted models showed that the probabilities of growth of L. monocytogenes in both salmon and TSB decreased when the salt and/or phenol concentrations increased, and at lower storage temperatures. In general, the growth probabilities of L. monocytogenes were affected more profoundly by salt and storage temperature than by phenol. The growth probabilities of L. monocytogenes estimated by the TSB model were higher than those by the salmon model at the same salt/phenol concentrations and storage temperatures. The growth probabilities predicted by the salmon and TSB models were comparable at higher storage temperatures, indicating the potential use of TSB as a model system to substitute salmon in studying the growth behavior of L. monocytogenes may only be suitable when the temperatures of interest are in higher storage temperatures (e.g., >12 °C). The model for salmon demonstrated the effects of salt, phenol, and storage temperature and their interactions on the growth probabilities of L. monocytogenes, and may be used to determine the growth probability of L. monocytogenes in smoked seafood.  相似文献   

16.
We demonstrated the effectiveness of delivering an antimicrobial purge/fluid into shrink-wrap bags immediately prior to introducing the product and vacuum sealing, namely the “Sprayed Lethality In Container” (SLIC™) intervention delivery method. The pathogen was Listeria monocytogenes, the antimicrobials were acidic calcium sulfate (ACS; calcium sulfate plus lactic acid; 1:1 or 1:2 in dH2O) and lauric arginate (LAE; Ethyl-N-dodecanoyl-l-arginate hydrochloride; 5% or 10% in dH2O), and the product was commercially prepared “table brown” ham (ca. 3 pounds each). Hams were surface inoculated with a five-strain cocktail of L. monocytogenes (ca. 7.0 log10 CFU per ham), added to shrink-wrap bags that already contained ACS or LAE, vacuum-sealed, and stored at 4 °C for 24 h. Pathogen levels decreased by 1.2, 1.6, 2.4, and 3.1 log10 CFU/ham and 0.7, 1.6, 2.2, and 2.6 log10 CFU/ham in samples treated with 2, 4, 6, and 8 mL of a 1:1 and 1:2 solution of ACS, respectively. In samples treated with 2, 4, 6, and 8 mL of a 5% solution of LAE, pathogen levels decreased by 3.3, 6.5, 5.6, and 6.5 log10 CFU/ham, whereas when treated with a 10% solution of LAE pathogen levels decreased ca. 6.5 log10 CFU/ham for all application volumes tested. The efficacy of ACS and LAE were further evaluated in shelf-life studies wherein hams were surface inoculated with either ca. 3.0 or 7.0 log10 CFU of L. monocytogenes, added to shrink-wrap bags that contained 0, 4, 6, or 8 mL of either a 1:2 solution of ACS or a 5% solution of LAE, vacuum-sealed, and stored at 4 °C for 60 days. For hams inoculated with 7.0 log10 CFU, L. monocytogenes levels decreased by ca.1.2, 1.5, and 2.0 log10 CFU/ham and 5.1, 5.4, and 5.5 log10 CFU/ham within 24 h at 4 °C in samples treated with 4, 6, and 8 mL of a 1:2 solution of ACS and a 5% solution of LAE, respectively, compared to control hams that were not treated with either antimicrobial. Thereafter, pathogen levels remained relatively unchanged (±1.0 log10 CFU/ham ) after 60 days at 4 °C in hams treated with 4, 6, and 8 mL of a 1:2 solution of ACS and increased by ca. 2.0–5.0 log10 CFU/ham in samples treated with 4, 6, and 8 mL of a 5% solution of LAE. For hams inoculated with 3.0 log10 CFU, L. monocytogenes levels decreased by 1.3, 1.9, and 1.8 log10 CFU/ham within 24 h at 4 °C in samples treated with 4, 6, and 8 mL of a 1:2 solution of ACS, respectively, compared to control hams that were not treated. Likewise, levels of the pathogen were reduced to below the limit of detection (i.e., 1.48 log10 CFU/ham) in the presence of 4, 6, and 8 mL of a 5% solution of LAE within 24 h at 4 °C. After 60 days at 4 °C, pathogen levels remained relatively unchanged (±0.3 log10 CFU/ham) in hams treated with 4, 6, and 8 mL of a 1:2 solution of ACS. However, levels of L. monocytogenes increased by ca. 2.0 log10 CFU/ham in samples treated with 4 and 6 mL of a 5% LAE solution within 60 days but remained below the detection limit on samples treated with 8 mL of this antimicrobial. These data confirmed that application via SLIC™ of both ACS and LAE, at the concentrations and volumes used in this study, appreciably reduced levels of L. monocytogenes on the surface of hams within 24 h at 4 °C and showed potential for controlling outgrowth of the pathogen over 60 days of refrigerated storage.  相似文献   

17.
We evaluated the influence of ultrahigh pressure homogenization (UHPH) treatment applied to milk containing Staphylococcus aureus CECT 976 before cheese making, and the benefit of applying a further high hydrostatic pressure (HHP) treatment to cheese. The evolution of Staph. aureus counts during 30 d of storage at 8°C and the formation of staphylococcal enterotoxins were also assessed. Milk containing approximately 7.3 log10 cfu/mL of Staph. aureus was pressurized using a 2-valve UHPH machine, applying 330 and 30 MPa at the primary and the secondary homogenizing valves, respectively. Milk inlet temperatures (Tin) of 6 and 20°C were assayed. Milk was used to elaborate soft-curd cheeses (UHPH cheese), some of which were additionally submitted to 10-min HHP treatments of 400 MPa at 20°C (UHPH+HHP cheese). Counts of Staph. aureus were measured on d 1 (24 h after manufacture or immediately after HHP treatment) and after 2, 15, and 30 d of ripening at 8°C. Counts of control cheeses not pressure-treated were approximately 8.5 log10 cfu/g showing no significant decreases during storage. In cheeses made from UHPH treated milk at Tin of 6°C, counts of Staph. aureus were 5.0 ± 0.3 log10 cfu/g at d 1; they decreased significantly to 2.8 ± 0.2 log10 cfu/g on d 15, and were below the detection limit (1 log10 cfu/g) after 30 d of storage. The use of an additional HHP treatment had a synergistic effect, increasing reductions up to 7.0 ± 0.3 log10 cfu/g from d 1. However, for both UHPH and UHPH+HHP cheeses in the 6°C Tin samples, viable Staph. aureus cells were still recovered. For samples of the 20°C Tin group, complete inactivation of Staph. aureus was reached after 15 d of storage for both UHPH and UHPH+HHP cheese. Staphylococcal enterotoxins were found in controls but not in UHPH or UHPH+HHP treated samples. This study shows a new approach for significantly improving cheese safety by means of using UHPH or its combination with HHP.  相似文献   

18.
The aim of the work was to develop and validate a model of the inactivation of Listeria monocytogenes on dry-cured ham by high hydrostatic pressure (HHP) processing, as a function of the technological parameters: intensity, length and fluid temperature. Dry-cured ham inoculated with L. monocytogenes was treated at different HHP conditions (at 347-852 MPa; for 2.3 to 15.75 min; at 7.6 to 24.4 °C) following a central composite design. Bacterial inactivation was assessed in terms of logarithmic reductions of L. monocytogenes counts on selective media. According to the best fitting and most significant polynomial equation, pressure and time were the most important factors determining the inactivation extent. The significance of the quadratic term of pressure and time indicated that little effect was observed below 450 MPa, whereas holding time longer than 10 min did not result in a meaningful reduction of L. monocytogenes counts. Temperature did not show significant influence at the range assayed. The model was validated with results obtained from further experiments and bibliographical data within the range of the experimental domain. The accuracy factor and bias factor were within the proposed acceptable values indicating the suitability of the model for predictive purposes, such as prediction of the process criteria to meet the Food Safety Objectives. The results of this work may help food processors to select optimum processing conditions of HHP.  相似文献   

19.
The aim of this study was to obtain data from refrigerated ready-to-eat seafood products at retail in Spain (young eels, crabstick and smoked salmon), regarding prevalence and levels of Listeria monocytogenes, storage temperatures and the impact of transport conditions (type of bag) on the temperature of the product. The one-year surveillance period was carried out according to the EC Regulation No. 2073/2005, taking 5 units/batch and analyzing 250 samples following ISO 11290-1/A1 and ISO 11290-2/A methodologies. Low prevalence of L. monocytogenes was observed in surimi products, while 4.8% of smoked salmon samples were positive for Listeria with low levels (<10 cfu/g) and uneven pathogen distribution. A single company was responsible for 80% of the positive lots. All purchased products showed values higher than 4 °C at retail and an average increase of 2.5 °C or up to 6.2 °C was recorded when isothermal or plastic shopping bags were used for transport, respectively. To avoid noncompliance of the Food Safety Objective for L. monocytogenes in seafood RTE products more efforts from all stakeholders are needed, with special attention so as to improve control and maintenance of refrigerators at retail and to enhance consumer education regarding food safety practices.  相似文献   

20.
Comparison of Clostridium perfringens spore germination and outgrowth in cooked uncured products during cooling for different meat species is presented. Cooked, uncured product was inoculated with C. perfringens spores and vacuum packaged. For the isothermal experiments, all samples were incubated in a water bath stabilized at selected temperatures between 10 and 51 °C and sampled periodically. For dynamic experiments, the samples were cooled from 54.4 to 27 °C and subsequently from 27 to 4 °C for different time periods, designated as x and y hours, respectively. The growth models used were based on a model developed by Baranyi and Roberts (1994. A dynamic approach to predicting bacterial growth in food. Int. J. Food Micro. 23, 277-294), which incorporates a constant, referred to as the physiological state constant, q0. The value of this constant captures the cells’ history before the cooling begins. To estimate specific growth rates, data from isothermal experiments were used, from which a secondary model was developed, based on a form of Ratkowsky’s 4-parameter equation. The estimated growth kinetics associated with pork and chicken were similar, but growth appeared to be slightly greater in beef; for beef, the maximum specific growth rates estimated from the Ratkowsky curve was about 2.7 log10 cfu/h, while for the other two species, chicken and pork, the estimate was about 2.2 log10 cfu/h. Physiological state constants were estimated by minimizing the mean square error of predictions of the log10 of the relative increase versus the corresponding observed quantities for the dynamic experiments: for beef the estimate was 0.007, while those for pork and chicken the estimates were about 0.014 and 0.011, respectively. For a hypothetical 1.5 h cooling from 54 °C to 27° and 5 h to 4 °C, corresponding to USDA-FSIS cooling compliance guidelines, the predicted growth (log10 of the relative increase) for each species was: 1.29 for beef; 1.07 for chicken and 0.95 log10 for pork. However, it was noticed that for pork in particular, the model using the derived q0 had a tendency to over-predict relative growth when the observed amount of relative growth was small, and under-predict the relative growth when the observed amount of relative growth was large. To provide more fail-safe estimate, rather than using the derived value of q0, a value of 0.04 is recommended for pork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号