首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of a genome-wide scan to identify quantitative trait loci (QTL) that contribute to genetic variation in long-chain milk fatty acids. Milk-fat composition phenotypes were available on 1,905 Dutch Holstein-Friesian cows. A total of 849 cows and their 7 sires were genotyped for 1,341 single nucleotide polymorphisms across all Bos taurus autosomes (BTA). We detected significant QTL on BTA14, BTA15, and BTA16: for C18:1 cis-9, C18:1 cis-12, C18:2 cis-9,12, CLA cis-9,trans-11, C18:3 cis-9,12,15, the C18 index, the total index, total saturated fatty acids, total unsaturated fatty acids (UFA), and the ratio of saturated fatty acids:unsaturated fatty acids on BTA14; for C18:1 trans fatty acids on BTA15; and for the C18 and CLA indices on BTA16. The QTL explained 3 to 19% of the phenotypic variance. Suggestive QTL were found on 16 other chromosomes. The diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism on BTA14, which is known to influence fatty acid composition, most likely explains the QTL that was detected on BTA14.  相似文献   

2.
A whole-genome scan using an affected paternal half-sib design was utilized to detect quantitative trait loci (QTL) for left-sided displaced abomasum (LDA) in German Holsteins. A total of 360 animals from 14 paternal half-sib families were genotyped, for a total of 306 polymorphic microsatellites. For a whole-genome scan, 221 markers were equally distributed over all 29 bovine autosomes, with an average distance of 13.7 cM. For fine-mapping, a total of 85 additional microsatellites were used. We identified genome-wide significant QTL on Bos taurus autosome (BTA) 1 (54.6 to 58.3 cM) and on BTA3 (5.9 cM). Furthermore, 3 chromosome-wide significant QTL were located on bovine chromosomes 21, 23, and 24. In addition, we found 11 QTL that cosegregated in grandsire families but that were not significant in the across-family analysis. These QTL were located on BTA5, 6, 10, 12, 15, 16, 17, 19, 23, and 26. This study is the first report on QTL for LDA and is a first step toward identifying single nucleotide polymorphisms for LDA-QTL.  相似文献   

3.
The aim of this study was to fine-map a genomic region associated with milk fatty acids (FA) on Bos taurus autosome (BTA) 17. This genomic region has been discovered with 50,000 (50k) single nucleotide polymorphisms (SNP) imputed to 777,000 (777k) SNP. In this study, high-density genotypes were imputed to whole-genome sequences level to identify candidate gene(s) associated with milk FA composition on BTA17. Phenotypes and genotypes were available for 1,640 cows sampled in winter, and for 1,581 cows sampled in summer. Phenotypes consisted of gas chromatography measurements in winter and in summer milk samples of 6 individual FA and the indicator of de novo synthesis, C6:0–C14:0. Genotypes consisted of imputed 777k SNP, and 89 sequenced ancestors of the population of genotyped cows. In addition, 450 whole-genome sequences from the 1,000 Bull Genome Consortium were available. Using 495 Holstein-Friesian sequences as a reference population, the 777k SNP genotypes of the cows were imputed to sequence level. We then applied single-variant analyses with an animal model, and identified thousands of significant associations with C6:0, C8:0, C10:0, C12:0, C14:0, and C6:0–C14:0. For C8:0 in summer milk samples, the genomic region located between 29 and 34 Mbp on BTA17 revealed a total of 646 significant associations. The most significant associations [–log10(P-value) = 7.82] were 8 SNP in perfect linkage disequilibrium. After fitting one of these 8 SNP as a fixed effect in the model, and re-running the single-variant analyses, no further significant associations were found for any of the 6 FA or C6:0–C14:0. These findings suggest that one polymorphism underlying this QTL on BTA17 influences multiple de novo synthesized milk FA. Thirteen genes in the QTL region were identified and analyzed carefully. Six out of the 8 SNP that showed the strongest associations were located in the La ribonucleoprotein domain family, member 1B (LARP1B) gene, and we suggest LARP1B as a primary candidate gene. Another gene of interest for this QTL region might be PKL4. None of these suggested candidate genes have previously been associated with milk fat synthesis or milk FA composition.  相似文献   

4.
Studies have reported genetic variation in milk urea nitrogen (MUN) between cows, suggesting genetic differences in nitrogen efficiency between cows. In this paper, the results of a genome-wide scan to identify quantitative trait loci (QTL) that contribute to genetic variation in MUN and MUN yield are presented. Two to 3 morning milk samples were taken from 1,926 cows, resulting in 5,502 test-day records. Test-day records were corrected for systematic environmental effects using a repeatability animal model. Averages of corrected phenotypes of 849 cows, belonging to 7 sire families, were used in an across-family multimarker regression approach to detect QTL. Animals were successfully genotyped for 1,341 single nucleotide polymorphisms. The QTL analysis resulted in 4 chromosomal regions with suggestive QTL: Bos taurus autosomes (BTA) 1, 6, 21, and 23. On BTA 1, 2 suggestive QTL affecting MUN were detected at 60 and 140 cM. On BTA 6, 1 suggestive QTL affecting both MUN and MUN yield was detected at 103 cM. On BTA 21, 1 suggestive QTL affecting MUN yield was detected at 83 cM. On BTA 23, 1 suggestive QTL affecting MUN was detected at 54 cM. Quantitative trait loci for MUN and MUN yield were suggestive and each explained between 2 and 3% of the phenotypic variance.  相似文献   

5.
This work aimed to confirm previously reported quantitative trait loci (QTL) affecting the somatic cell score (SCS) in dairy cattle on Bos taurus autosomes (BTA) 4 and 26. A granddaughter design with selective genotyping was implemented that included half-sib families from 12 male lines of Italian Holstein cattle. The animals were genotyped for 5 microsatellite markers each on regions of BTA 4 (average marker spacing 9.42 cM) and BTA 26 (average marker spacing 5.26 cM), previously reported by other authors as carrying QTL for somatic cell count. Quantitative trait loci analyses were performed using interval mapping by regressing sire breeding values for SCS onto genotype probabilities at 1-cM intervals along the 2 chromosome regions. Breeding values for SCS were estimated for the whole population using a test-day repeatability animal model. Results were not significant on a chromosome basis, but a possible QTL was found at BM4505 on BTA 26, confirming this region for further studies of QTL affecting SCS in the Italian Holstein population.  相似文献   

6.
《Journal of dairy science》2022,105(12):9763-9791
Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput and inexpensive methodology used to evaluate concentrations of fat and protein in dairy cattle milk samples. The objective of this study was to compare the genetic characteristics of FT-MIR predicted fatty acids and individual milk proteins with those that had been measured directly using gas and liquid chromatography methods. The data used in this study was based on 2,005 milk samples collected from 706 Holstein-Friesian × Jersey animals that were managed in a seasonal, pasture-based dairy system, with milk samples collected across 2 consecutive seasons. Concentrations of fatty acids and protein fractions in milk samples were directly determined by gas chromatography and high-performance liquid chromatography, respectively. Models to predict each directly measured trait based on FT-MIR spectra were developed using partial least squares regression, with spectra from a random selection of half the cows used to train the models, and predictions for the remaining cows used as validation. Variance parameters for each trait and genetic correlations for each pair of measured/predicted traits were estimated from pedigree-based bivariate models using REML procedures. A genome-wide association study was undertaken using imputed whole-genome sequence, and quantitative trait loci (QTL) from directly measured traits were compared with QTL from the corresponding FT-MIR predicted traits. Cross-validation prediction accuracies based on partial least squares for individual and grouped fatty acids ranged from 0.18 to 0.65. Trait prediction accuracies in cross-validation for protein fractions were 0.53, 0.19, and 0.48 for α-casein, β-casein, and κ-casein, 0.31 for α-lactalbumin, 0.68 for β-lactoglobulin, and 0.36 for lactoferrin. Heritability estimates for directly measured traits ranged from 0.07 to 0.55 for fatty acids; and from 0.14 to 0.63 for individual milk proteins. For FT-MIR predicted traits, heritability estimates were mostly higher than for the corresponding measured traits, ranging from 0.14 to 0.46 for fatty acids, and from 0.30 to 0.70 for individual proteins. Genetic correlations between directly measured and FT-MIR predicted protein fractions were consistently above 0.75, with the exceptions of C18:0 and C18:3 cis-3, which had genetic correlations of 0.72 and 0.74, respectively. The GWAS identified trait QTL for fatty acids with likely candidates in the DGAT1, CCDC57, SCD, and GPAT4 genes. Notably, QTL for SCD were largely absent in the FT-MIR predicted traits, and QTL for GPAT4 were absent in directly measured traits. Similarly, for directly measured individual proteins, we identified QTL with likely candidates in the CSN1S1, CSN3, PAEP, and LTF genes, but the QTL for CSN3 and LTF were absent in the FT-MIR predicted traits. Our study indicates that genetic correlations between directly measured and FT-MIR predicted fatty acid and protein fractions are typically high, but that phenotypic variation in these traits may be underpinned by differing genetic architecture.  相似文献   

7.
《Journal of dairy science》2023,106(9):6299-6315
The aim of this study was to estimate genetic parameters and identify genomic regions associated with selected individual and groups of milk fatty acids (FA) predicted by milk mid-infrared spectrometry in Dual-Purpose Belgian Blue cows. The used data were 69,349 test-day records of milk yield, fat percentage, and protein percentage along with selected individual and groups FA of milk (g/dL milk) collected from 2007 to 2020 on 7,392 first-parity (40,903 test-day records), and 5,185 second-parity (28,446 test-day records) cows distributed in 104 herds in the Walloon Region of Belgium. Data of 28,466 SNPs, located on 29 Bos taurus autosomes (BTA), of 1,699 animals (639 males and 1,060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 25-SNP sliding window (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Average daily heritability estimated for the included milk FA traits ranged from 0.01 (C4:0) to 0.48 (C12:0) and 0.01 (C4:0) to 0.42 (C12:0) in the first and second parities, respectively. Genetic correlations found between milk yield and the studied individual milk FA, except for C18:0, C18:1 trans, C18:1 cis-9, were positive. The results showed that fat percentage and protein percentage were positively genetically correlated with all studied individual milk FA. Genome-wide association analyses identified 11 genomic regions distributed over 8 chromosomes [BTA1, BTA4, BTA10, BTA14 (4 regions), BTA19, BTA22, BTA24, and BTA26] associated with the studied FA traits, though those found on BTA14 partly overlapped. The genomic regions identified differed between parities and lactation stages. Although these differences in genomic regions detected may be due to the power of quantitative trait locus detection, it also suggests that candidate genes underlie the phenotypic expression of the studied traits may vary between parities and lactation stages. These findings increase our understanding about the genetic background of milk FA and can be used for the future implementation of genomic evaluation to improve milk FA profile in Dual-Purpose Belgian Blue cows.  相似文献   

8.
A whole genome scan of Finnish Ayrshire was conducted to map quantitative trait loci (QTL) affecting milk production. The analysis included 12 half-sib families containing a total of 494 bulls in a granddaughter design. The families were genotyped with 150 markers to construct a 2764 cM (Haldane) male linkage map. In this study interval mapping with multiple-marker regression approach was extended to analyse multiple chromosomes simultaneously. The method uses identified QTL on other chromosomes as cofactors to increase mapping power. The existence of multiple QTL on the same linkage group was also analyzed by fitting a two-QTL model to the analysis. Empirical values for chromosome-wise significance thresholds were determined using a permutation test. Two genome-wise significant QTL were identified when chromosomes were analyzed individually, one affecting fat percentage on chromosome (BTA) 14 and another affecting fat yield on BTA12. The cofactor analysis revealed in total 31 genome-wise significant QTL. The result of two-QTL analysis suggests the existence of two QTL for fat percentage on BTA3. In general, most of the identified QTL confirm results from previous studies of Holstein-Friesian cattle. A new QTL for all yield components was identified on BTA12 in Finnish Ayrshire.  相似文献   

9.
A genomic region associated with milk fatty acid (FA) composition has been detected on Bos taurus autosome (BTA)17 based on 50,000 (50K) single nucleotide polymorphism (SNP) genotypes. The aim of our study was to fine-map BTA17 with imputed 777,000 (777K) SNP genotypes to identify candidate genes associated with milk FA composition. Phenotypes consisted of gas chromatography measurements of 14 FA based on winter and summer milk samples. Phenotypes and genotypes were available on 1,640 animals in winter milk, and on 1,581 animals in summer milk samples. Single-SNP analyses showed that several SNP in a region located between 29.0 and 34.0 Mbp were in strong association with C6:0, C8:0, and C10:0. This region was further characterized based on haplotypes. In summer milk samples, for example, these haplotypes explained almost 10% of the genetic variance in C6:0, 9% in C8:0, 3.5% in C10:0, 1.8% in C12:0, and 0.9% in C14:0. Two groups of haplotypes with distinct predicted effects could be defined, suggesting the presence of one causal variant. Predicted haplotype effects tended to increase from C6:0 to C14:0; however, the proportion of genetic variance explained by the haplotypes tended to decrease from C6:0 to C14:0. This is an indication that the quantitative trait locus (QTL) region is involved either in the elongation process or in early termination of de novo synthesized FA. Although many genes are present in this QTL region, most of these genes on BTA17 have not been characterized yet. The strongest association was found close to the progesterone receptor membrane component 2 (PGRMC2) gene, which has not yet been associated with milk FA composition. Therefore, no clear candidate gene associated with milk FA composition could be identified for this QTL.  相似文献   

10.
A major quantitative trait locus (QTL) for milk fat content and fatty acids in both milk and adipose tissue has been detected on Bos taurus autosome 19 (BTA19) in several cattle breeds. The objective of this study was to refine the location of the QTL on BTA19 for bovine milk fat composition using a denser set of markers. Opportunities for fine mapping were provided by imputation from 50,000 genotyped single nucleotide polymorphisms (SNP) toward a high-density SNP panel with up to 777,000 SNP. The QTL region was narrowed down to a linkage disequilibrium block formed by 22 SNP covering 85,007 bp, from 51,303,322 to 51,388,329 bp on BTA19. This linkage disequilibrium block contained 2 genes: coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN). The gene CCDC57 is minimally characterized and has not been associated with bovine milk fat previously, but is expressed in the mammary gland. The gene FASN has been associated with bovine milk fat and fat in adipose tissue before. This gene is a likely candidate for the QTL on BTA19 because of its involvement in de novo fat synthesis. Future studies using sequence data of both CCDC57 and FASN, and eventually functional studies, will have to be pursued to assign the causal variant(s).  相似文献   

11.
Lameness is an important factor for culling animals. Strong legs and feet improve herd life of dairy cows. Therefore, many countries include leg and feet conformation traits in their breeding programs, often as early predictors of longevity. However, few countries directly measure lameness related traits to include these in a breeding program. Lameness indices in 3 different lactations and 5 leg conformation traits (rear legs side view, rear legs rear view, hock quality, bone quality, and foot angle) were measured on granddaughters of 19 Danish Holstein grandsires with 33 to 105 sons. A genome scan was performed to detect quantitative trait loci (QTL) based on the 29 autosomes using microsatellite markers. Data were analyzed across and within families for QTL affecting lameness and leg conformation traits. A regression method and a variance component method were used for QTL detection. Two QTL each for lameness in the first [Bos taurus autosome (BTA); BTA5, BTA26] and second (BTA19, BTA22) lactations were detected. For the 5 different leg conformation traits, 7 chromosome-wise significant QTL were detected across families for rear legs side view, 5 for rear legs rear view, 4 for hock quality, 4 for bone quality, and 1 for foot angle. For those chromosomes where a QTL associated with 2 different traits was detected (BTA1, BTA11, BTA15, BTA26, and BTA27), a multitrait-1-QTL model and a multitrait-2-QTL model were performed to characterize these QTL as single QTL with pleiotropic effects or distinct QTL.  相似文献   

12.
Data from the joint Nordic breeding value prediction for Danish and Swedish Holstein grandsire families were used to locate quantitative trait loci (QTL) for female fertility traits in Danish and Swedish Holstein cattle. Up to 36 Holstein grandsires with over 2,000 sons were genotyped for 416 microsatellite markers. Single trait breeding values were used for 12 traits relating to female fertility and female reproductive disorders. Data were analyzed by least squares regression analysis within and across families. Twenty-six QTL were detected on 17 different chromosomes. The best evidence was found for QTL segregating on Bos taurus chromosome (BTA)1, BTA7, BTA10, and BTA26. On each of these chromosomes, several QTL were detected affecting more than one of the fertility traits investigated in this study. Evidence for segregation of additional QTL on BTA2, BTA9, and BTA24 was found.  相似文献   

13.
A whole-genome scan was carried out to detect quantitative trait loci (QTL) influencing beef fatty acid composition using a Charolais × Holstein population established using a balanced F2 and Backcross breeding design. The phenotypes considered in this study included a total of 24 fatty acid related traits determined in loin muscle samples of the 235 second-generation cross-bred bull calves of the herd. The QTL regression analysis performed, based on 165 microsatellite markers distributed across the 29 bovine autosomes, identified 34 QTL with F-ratios exceeding the 5% chromosome-wide significance threshold. Three of these QTL, one located on chromosome 1 (for the content on linoleic acid, C18:2n−6) and two on chromosome 10 (for the content of gamma-linoleic DPA-docosapentaenoic and DPA-docosapentaenoic, C20:3n−6 and C22:5n−3), also exceeded the 5% genome-wide significance level. A follow-up analysis correcting for intramuscular fat content showed that some of the QTL detected initially (e.g. those localised on chromosome 22) were influenced by fat deposition differences between the founder breeds. The coincident location of some of the linkage associations identified and QTL previously reported for beef fatty acid composition and other meat quality traits, in the same or other cattle populations, provides supporting evidence for the results reported here.  相似文献   

14.
Five chromosomes were selected for joint quantitative trait loci (QTL) analyses for clinical mastitis (CM) and somatic cell score (SCS) in 3 breeds: Finnish Ayrshire (FA), Swedish Red and White (SRB), and Danish Red (DR). In total, 19 grandsires and 672 sons in FA, 19 grandsires and 499 sons in SRB, and 8 grandsires and 258 sons in DR were used in the study. These individuals were genotyped with the 61 microsatellite markers used in any of the previous QTL scans on the selected chromosomes. Within-family QTL analyses based on linear regression models were carried out for CM and SCS to identify the segregating sires for each region. On the segregating families, joint single-trait and 2-trait analyses were performed using variance components models. The analyses confirmed that QTL affecting CM or SCS, or both, segregate on Bos taurus autosomes (BTA) 9, 11, 14, and 18, whereas a QTL on BTA29 could not be confirmed. Our results indicate that there may be at least 2 linked QTL on BTA9, one that primarily affects CM and a second that primarily affects SCS. On chromosomes BTA11, 14, and 18, the joint analyses were only significant for SCS.  相似文献   

15.
Mastitis is a mammary disease that frequently affects dairy cattle. Despite considerable research on the development of effective prevention and treatment strategies, mastitis continues to be a significant issue in bovine veterinary medicine. To identify major genes that affect mastitis in dairy cattle, 6 chromosomal regions on Bos taurus autosome (BTA) 6, 13, 16, 19, and 20 were selected from a genome scan for 9 mastitis phenotypes using imputed high-density single nucleotide polymorphism arrays. Association analyses using sequence-level variants for the 6 targeted regions were carried out to map causal variants using whole-genome sequence data from 3 breeds. The quantitative trait loci (QTL) discovery population comprised 4,992 progeny-tested Holstein bulls, and QTL were confirmed in 4,442 Nordic Red and 1,126 Jersey cattle. The targeted regions were imputed to the sequence level. The highest association signal for clinical mastitis was observed on BTA 6 at 88.97 Mb in Holstein cattle and was confirmed in Nordic Red cattle. The peak association region on BTA 6 contained 2 genes: vitamin D-binding protein precursor (GC) and neuropeptide FF receptor 2 (NPFFR2), which, based on known biological functions, are good candidates for affecting mastitis. However, strong linkage disequilibrium in this region prevented conclusive determination of the causal gene. A different QTL on BTA 6 located at 88.32 Mb in Holstein cattle affected mastitis. In addition, QTL on BTA 13 and 19 were confirmed to segregate in Nordic Red cattle and QTL on BTA 16 and 20 were confirmed in Jersey cattle. Although several candidate genes were identified in these targeted regions, it was not possible to identify a gene or polymorphism as the causal factor for any of these regions.  相似文献   

16.
Bovine milk contains high proportions of saturated fatty acids (SFA) because of the extensive biohydrogenation of dietary fatty acids in the rumen. Stearoyl-coenzyme A desaturase 1 (SCD1) catalyzes the conversion of C10 to C18 SFA into their monounsaturated (MUFA) counterparts in the mammary glands of ruminant animals; and 2 alleles (A and V) have previously been identified at the SCD1 locus. Genotypes at this locus were identified and fatty acid contents of milk were measured for 525 Canadian Jersey cows. Association analysis indicated that allele A is positively associated with higher C10 (C10I), C12 (C12I) and C14 (C14I) indices and, consequently, with greater contents of C10:1 and C12:1, but not C14:1, relative to allele V. Allele A was also positively associated with increased 305-d milk and protein yields. Allele A, however, had no influence on C16 (C16I), C18 (C18I), or conjugated linoleic acid indices (CLAI) compared with the V allele. Stage of lactation had an influence on desaturase indices and consequently on the MUFA contents of milk fat. The indices C10I, C12I, C14I, and CLAI increased from early to mid lactation as did their respective MUFA. Genetic selection for increased unsaturation of the hypercholesterolemic fatty acids in milk fat is feasible and may be accompanied by increased lactation milk and protein yields.  相似文献   

17.
Identification of the genetic variants associated with calf survival in dairy cattle will aid in the elimination of harmful mutations from the cattle population and the reduction of calf and young stock mortality rates. We used de-regressed estimated breeding values for the young stock survival (YSS) index as response variables in a genome-wide association study with imputed whole-genome sequence variants. A total of 4,610 bulls with estimated breeding values were genotyped with the Illumina BovineSNP50 (Illumina, San Diego, CA) single nucleotide polymorphism (SNP) genotyping array. Genotypes were imputed to whole-genome sequence variants. After quality control, 15,419,550 SNP on 29 Bos taurus autosomes (BTA) were used for association analysis. A modified mixed-model association analysis was used for a genome scan, followed by a linear mixed-model analysis for selected genetic variants. We identified 498 SNP on BTA5 and BTA18 that were associated with the YSS index in Nordic Holstein. The SNP rs440345507 (Chr5:94721790) on BTA5 was the putative causal mutation affecting YSS. Two haplotype-based models were used to identify haplotypes with the largest detrimental effects on YSS index. For each association signal, 1 haplotype region with harmful effects and the lead associated SNP were identified. Detected haplotypes on BTA5 and BTA18 explained 1.16 and 1.20%, respectively, of genetic variance for the YSS index. We examined whether YSS quantitative trait loci (QTL) on BTA5 and BTA18 were associated with stillbirth. YSS QTL on BTA18 overlapped a QTL region for stillbirth, but most likely 2 different causal variants were responsible for these 2 QTL. Four component traits of the YSS index, defined by sex and age, were analyzed separately by the modified mixed-model approach. The same genomic regions were associated with both bull and heifer calf mortality. Several genes (EPS8, LOC100138951, and KLK family genes) contained a lead associated SNP or were included in haplotypes with large detrimental effects on YSS in Nordic Holstein cattle.  相似文献   

18.
Linkage, linkage disequilibrium, and combined linkage and linkage disequilibrium analyses were performed to map quantitative trait loci (QTL) affecting calving and conformation traits on Bos taurus autosome 18 (BTA18) in the German Holstein population. Six paternal half-sib families consisting of a total of 1,054 animals were genotyped on 28 genetic markers in the telomeric region on BTA18 spanning approximately 30 Mb. Calving traits, body type traits, and udder type traits were investigated. Using univariately estimated breeding values, maternal and direct effects on calving ease and stillbirth were analyzed separately for first- and further-parity calvings. The QTL initially identified by separate linkage and linkage disequilibrium analyses could be confirmed by a combined linkage and linkage disequilibrium analysis for udder composite index, udder depth, fore udder attachment, front teat placement, body depth, rump angle, and direct effects on calving ease and stillbirth. Concurrence of QTL peaks and a similar shape of restricted log-likelihood ratio profiles were observed between udder type traits and for body depth and calving traits, respectively. Association analyses were performed for markers flanking the most likely QTL positions by applying a mixed model including a fixed allele effect of the maternally inherited allele and a random polygenic effect. Results indicated that microsatellite marker DIK4234 (located at 53.3 Mb) is associated with maternal effects on stillbirth, direct effects on calving ease, and body depth. A comparison of effects for maternally inherited DIK4234 alleles indicated a favorable, positive correlation of maternal and direct effects on calving. Additionally, the association of maternally inherited DIK4234 marker alleles with body depth implied that conformation traits might provide the functional background of the QTL for calving traits. For udder type traits, the strong coincidence of QTL peaks and the position of the QTL in a region previously reported to harbor QTL for somatic cell score indicated that effects of QTL for udder type traits might be correlated with effects of QTL for udder health traits on BTA18. Our results suggest that loci in the middle to telomeric region on BTA18 with effect on conformation traits may also contribute to the genetic variance of calving and udder health traits. Further analyses are required to identify the causal mutations affecting conformation and calving traits and to investigate the correlation of effects for loci associated with conformation, calving, and udder health traits.  相似文献   

19.
Genome scans for detection of bovine quantitative trait loci (QTL) were performed via variance component linkage analysis and linkage disequilibrium single-locus regression (LDRM). Four hundred eighty-four Holstein sires, of which 427 were from 10 grandsire families, were genotyped for 9,919 single nucleotide polymorphisms (SNP) using the Affymetrix MegAllele GeneChip Bovine Mapping 10K SNP array. A hybrid of the granddaughter and selective genotyping designs was applied. Four thousand eight hundred fifty-six of the 9,919 SNP were located to chromosomes in base-pairs and formed the basis for the analyses. The mean polymorphism information content of the SNP was 0.25. The SNP centimorgan position was interpolated from their base-pair position using a microsatellite framework map. Estimated breeding values were used as observations, and the following traits were analyzed: 305-d lactation milk, fat, and protein yield; somatic cell score; herd life; interval of calving to first service; and age at first service. The variance component linkage analysis detected 102 potential QTL, whereas LDRM analysis found 144 significant SNP associations after accounting for a 5% false discovery rate. Twenty potential QTL and 49 significant SNP associations were in close proximity to QTL cited in the literature. Both methods found significant regions on Bos taurus autosome (BTA) 3, 5, and 16 for milk yield; BTA 14 and 19 for fat yield; BTA 1, 3, 16, and 28 for protein yield; BTA 2 and 13 for calving to first service; and BTA 14 for age at first service. Both approaches were effective in detecting potential QTL with a dense SNP map. The LDRM was well suited for a first genome scan due to its approximately 8 times lower computational demands. Further fine mapping should be applied on the chromosomal regions of interest found in this study.  相似文献   

20.
Advances in the molecular area of selection have expanded knowledge of the genetic architecture of complex traits through genome-wide association studies (GWAS). Several GWAS have been performed so far, but confirming these results is not always possible due to several factors, including environmental conditions. Thus, our objective was to identify genomic regions associated with traditional milk production traits, including milk yield, somatic cell score, fat, protein and lactose percentages, and fatty acid composition in a Holstein cattle population producing under tropical conditions. For this, 75,228 phenotypic records from 5,981 cows and genotypic data of 56,256 SNP from 1,067 cows were used in a weighted single-step GWAS. A total of 46 windows of 10 SNP explaining more than 1% of the genetic variance across 10 Bos taurus autosomes (BTA) harbored well-known and novel genes. The MGST1 (BTA5), ABCG2 (BTA6), DGAT1 (BTA14), and PAEP (BTA11) genes were confirmed within some of the regions identified in our study. Potential novel genes involved in tissue damage and repair of the mammary gland (COL18A1), immune response (LTTC19), glucose homeostasis (SLC37A1), synthesis of unsaturated fatty acids (LTBP1), and sugar transport (SLC37A1 and MFSD4A) were found for milk yield, somatic cell score, fat percentage, and fatty acid composition. Our findings may assist genomic selection by using these regions to design a customized SNP array to improve milk production traits on farms with similar environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号