首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The objective of this study was to evaluate the effect of capsular and ropy exopolysaccharide (EPS)-producing strains of Lactococcus lactis ssp. cremoris on textural and microstructural attributes during ripening of 50%-reduced-fat Cheddar cheese. Cheeses were manufactured with added capsule- or ropy-forming strains individually or in combination. For comparison, reduced-fat cheese with or without lecithin added at 0.2% (wt/vol) to cheese milk and full-fat cheeses were made using EPS-nonproducing starter, and all cheeses were ripened at 7°C for 6 mo. Exopolysaccharide-producing strains increased cheese moisture retention by 3.6 to 4.8% and cheese yield by 0.28 to 1.19 kg/100 kg compared with control cheese, whereas lecithin-containing cheese retained 1.4% higher moisture and had 0.37 kg/100 kg higher yield over the control cheese. Texture profile analyses for 0-d-old cheeses revealed that cheeses with EPS-producing strains had less firm, springy, and cohesive texture but were more brittle than control cheeses. However, these effects became less pronounced after 6 mo of ripening. Using transmission electron microscopy, fresh and aged cheeses with added EPS-producing strains showed a less compact protein matrix through which larger whey pockets were dispersed compared with control cheese. The numerical analysis of transmission electron microscopy images showed that the area in the cheese matrix occupied by protein was smaller in cheeses with added EPS-producing strains than in control cheese. On the other hand, lecithin had little impact on both cheese texture and microstructure; after 6 mo, cheese containing lecithin showed a texture profile very close to that of control reduced-fat cheese. The protein-occupied area in the cheese matrix did not appear to be significantly affected by lecithin addition. Exopolysaccharide-producing strains could contribute to the modification of cheese texture and microstructure and thus modify the functional properties of reduced-fat Cheddar cheese.  相似文献   

2.
Proteolysis during ripening of reduced fat Cheddar cheeses made with different exopolysaccharide (EPS)-producing and nonproducing cultures was studied. A ropy strain of Lactococcus lactis ssp. cremoris (JFR1) and capsule-forming nonropy and moderately ropy strains of Streptococcus thermophilus were used in making reduced-fat Cheddar cheese. Commercial Cheddar starter was used in making full-fat cheese. Results showed that the actual yield of cheese made with JFR1 was higher than that of all other reduced-fat cheeses. Cheese made with JFR1 contained higher moisture, moisture in the nonfat substance, and residual coagulant activity than all other reduced-fat cheeses. Proteolysis, as determined by PAGE and the level of water-soluble nitrogen, was also higher in cheese made with JFR1 than in all other cheeses. The HPLC analysis showed a significant increase in hydrophobic peptides (causing bitterness) during storage of cheese made with JFR1. Cheese made with the capsule-forming nonropy adjunct of S. thermophilus, which contained lower moisture and moisture in the nonfat substance levels and lower chymosin activity than did cheese made with JFR1, accumulated less hydrophobic peptides. In conclusion, some EPS-producing cultures produced reduced-fat Cheddar cheese with moisture in the nonfat substance similar to that in its full-fat counterpart without the need for modifying the standard cheese-making protocol. Such cultures might accumulate hydrophobic (bitter) peptides if they do not contain the system able to hydrolyze them. For making high quality reduced-fat Cheddar cheese, EPS-producing cultures should be used in conjunction with debittering strains.  相似文献   

3.
Textural, melting, and sensory characteristics of reduced-fat Cheddar cheeses made with exopolysaccharide (EPS)-producing and nonproducing cultures were monitored during ripening. Hardness, gumminess, springiness, and chewiness significantly increased in the cheeses as fat content decreased. Cheese made with EPS-producing cultures was the least affected by fat reduction. No differences in hardness, springiness, and chewiness were found between young reduced fat cheese made with a ropy Lactococcus lactis ssp. cremoris [JFR1; the culture that produced reduced-fat cheese with moisture in the nonfat substance (MNFS) similar to that in its full-fat counterpart] and its full-fat counterpart. Whereas hardness of full-fat cheese and reduced-fat cheese made with JFR1 increased during ripening, a significant decrease in its value was observed in all other cheeses. After 6 mo of ripening, reduced fat cheeses made with all EPS-producing cultures maintained lower values of all texture profile analysis parameters than did those made with no EPS. Fat reduction decreased cheese meltability. However, no differences in meltability were found between the young full-fat cheese and the reduced-fat cheese made with the ropy culture JFR1. Both the aged full- and reduced-fat cheeses made with JFR1 had similar melting patterns. When heated, they both became soft and creamy without losing shape, whereas reduced-fat cheese made with no EPS ran and separated into greasy solids and liquid. No differences were detected by panelists between the textures of the full-fat cheese and reduced-fat cheese made with JFR1, both of which were less rubbery or firm, curdy, and crumbly than all other reduced-fat cheeses.  相似文献   

4.
The microstructure of reduced- and full-fat Cheddar cheeses made with exopolysaccharide (EPS)-producing and nonproducing cultures was observed using cryo-scanning electron microscopy. Fully hydrated cheese samples were rapidly frozen in liquid nitrogen slush (−207°C) and observed in their frozen hydrated state without the need for fat extraction. Different EPS-producing cultures were used in making reduced-fat Cheddar cheese. Full-fat cheese was made with a commercial EPS-nonproducing starter culture. The cryo-scanning electron micrographs showed that fat globules in the fully hydrated cheese were surrounded by cavities. Serum channels and pores in the protein network were clearly observed. Young (1-wk-old) full-fat cheese contained wide and long fat serum channels, which were formed because of fat coalescence. Such channels were not observed in the reduced-fat cheese. Young reduced-fat cheese made with EPS-nonproducing cultures contained fewer and larger pores than did reduced-fat cheese made with a ropy strain of Lactococcus lactis ssp. cremoris (JFR1), which had higher moisture levels. A 3-dimensional network of EPS was observed in large pores in cheese made with JFR1. Major changes in the size and distribution of pores within the structure of the protein network were observed in all reduced-fat cheeses, except that made with JFR1, as they aged. Changes in porosity were less pronounced in both the full-fat and the reduced-fat cheeses made with JFR1.  相似文献   

5.
The objectives were to reduce bitterness in reduced-fat Cheddar cheese made with an exopolysaccharide (EPS)-producing culture and study relationships among ultra-filtration (UF), residual chymosin activity (RCA), and cheese bitterness. In previous studies, EPS-producing cultures improved the textural, melting, and viscoelastic properties of reduced-fat Cheddar cheese. However, the EPS-positive cheese developed bitterness after 2 to 3 mo of ripening due to increased RCA. We hypothesized that the reduced amount of chymosin needed to coagulate UF milk might result in reduced RCA and bitterness in cheese. Reduced-fat Cheddar cheeses were manufactured with EPS-producing and nonproducing cultures using skim milk or UF milk (1.2×) adjusted to a casein:fat ratio of 1.35. The EPS-producing culture increased moisture and RCA in reduced-fat Cheddar cheese. Lower RCA was found in cheese made from UF milk compared with that in cheese made from control milk. Ultrafiltration at a low concentration rate (1.2×) produced EPS-positive, reduced-fat cheese with similar RCA to that in the EPS-negative cheese. Slower proteolysis was observed in UF cheeses compared with non-UF cheeses. Panelists reported that UF EPS-positive cheese was less bitter than EPS-positive cheese made from control milk. This study showed that UF at a low concentration factor (1.2×) could successfully reduce bitterness in cheese containing a high moisture level. Because this technology reduced the RCA level (per g of protein) to a level similar to that in the control cheeses, the contribution of chymosin to cheese proteolysis would be similar in both cheeses.  相似文献   

6.
The objective was to study the influence of different exopolysaccharide (EPS)-producing and nonproducing lactic cultures on the viscoelastic properties of reduced-fat Cheddar cheese. Changes in the viscoelastic properties were followed over a ripening period of 6 mo. Results showed that the elastic, viscous, and complex moduli were higher in reduced-fat cheeses made with EPS-nonproducing cultures than in full-fat cheese. No differences in the viscoelastic properties were found between young reduced-fat cheese made with a ropy strain of Lactococcus lactis ssp. cremoris (JFR1) and its full-fat counterpart. Interestingly, the changes in viscoelastic moduli in both full-fat cheese and reduced-fat cheese made with JFR1 during ripening followed the same pattern. Whereas the moduli increased during the first month of ripening in those 2 cheeses, a dramatic decrease was observed in all other cheeses. Slopes of the viscoelastic moduli as a function of frequency were lower in the full-fat than in reduced-fat cheeses. The creep test showed that fresh reduced-fat cheese made with JFR1 was less rigid and more deformable than that made with EPS-nonproducing cultures. The creep and recovery properties of young reduced-fat cheese made with JFR1 and the full-fat type were similar. No differences were found in the viscoelastic properties between reduced-fat cheese made with no EPS and those made with EPS-producing adjunct cultures of Streptococcus thermophilus. After 6 mo of ripening, cheeses made with EPS-producing cultures maintained lower elastic and viscous moduli than did those made with no EPS.  相似文献   

7.
《International Dairy Journal》2005,15(10):1044-1055
The objective of the present study was to develop a methodology for direct observation of capsular and ropy strains and their exopolysaccharides (EPS) in a Cheddar cheese matrix. Cheddar cheeses with 50% reduced fat were made from milk containing 1.7% fat using mixed starter culture containing either capsule-forming Lactococcus lactis subsp. cremoris (SMQ-461) or ropy L. lactis subsp. cremoris (JRF-1) strains. Control cheese was made using the EPS-negative L. lactis subsp. cremoris (RBL132) strain. Following cheese pressing, samples were taken from each cheese treatment and examined by transmission electron microscopy (TEM). Samples were divided into two series: the first was prepared following the conventional methods (involving fixation, post fixation, dehydration and embedding in resin) and the second with added ruthenium red at 0.15% (w/v) during the fixation, post fixation and washing procedures. Gold-labeled lectin was also used for the visualization and localization of EPS in cheese matrix. Electron micrographs showed that ruthenium red makes it possible to visualize and enhance the resolution of the EPS in a Cheddar matrix compared with the conventional method. The EPS layer of the capsular strain appeared regular and evenly distributed around the cell, whereas the cell-associated EPS layer produced by the ropy strain was longer, more irregular (having a filamentous structure) and unevenly surrounded the cell. EPS released from the ropy strain appeared to form a network-like structure located principally in whey pockets and appeared to interact with the casein matrix and fat globule membrane. Labeling EPS by lectin conjugated to colloidal gold could only be performed with conventional preparation of cheese samples and appeared to react only with the cell surface rather than with liberated EPS. Besides their ability to bind water and increase cheese yield, capsular and ropy strains used in this study appear to have potential autolytic characteristics, which may have an impact on cheese proteolysis, texture and flavor quality.  相似文献   

8.
Pasteurized (65°C, 30 min), pressurized (400 MPa, 22°C, 15 min) and pasteurized–pressurized milks were used for reduced-fat (approximately 32% of total solids) cheese production. Pressurization of milk increased the yield of reduced-fat cheese through an enhanced β-lactoglobulin and moisture retention. In addition, pressurisation of pasteurized skim milk improved its coagulation properties. The cheeses made from pasteurized–pressurized and pressurized milks showed a faster rate of protein breakdown than the cheese made from pasteurized milk, that might be mainly attributed to a higher level of residual rennet. Hardness of the experimental cheeses, as determined by both the sensory panel and instrumental analyses, decreased as the moisture content and proteolytic degradation of the cheese increased (pasteurized>pressurized>pasteurized–pressurized). In general terms, pressurization of reduced-fat milk prior to cheese-making improved cheese texture and thus accounted for a higher overall acceptability, except for the cheeses made from pasteurized–pressurized milk at 60 d of ripening, whose acceptability score was adversely affected by bitterness.  相似文献   

9.
The effect of two commercially available adjunct cultures, LBC 80 (Lactobacillus casei subsp. rhamnosus) and CR-213 (containing Lactococcus lactis subsp. cremoris and Lc. lactis subsp. lactis) on the proteolysis in low-fat hard ewes’ milk cheese of Kefalograviera-type was investigated. Two controls, a full-fat cheese (306 g kg−1 fat, 378 g kg−1 moisture) and a low-fat cheese (97 g kg−1 fat, 486 g kg−1 moisture, made using a modified procedure), were also prepared. The effect of adjunct culture on proteolysis, as examined by polyacrylamide gel electrophoresis of cheese and water soluble cheese extracts, was marginal. The reverse-phase HPLC peptide profiles of the water soluble extracts from low-fat cheeses were similar although some quantitative differences were observed between low-fat control cheese and experimental cheeses. The fat content as reflected by the differences in peptide profiles affected the pattern of proteolysis. Proteolysis, as measured by the percentage of total nitrogen soluble in water or in 120 g L−1 trichloroacetic acid, was significantly (P<0.05) affected by the addition of adjunct cultures. Furthermore, the adjunct cultures enhanced the production of low molecular mass nitrogenous compounds; the levels of total nitrogen, soluble in 50 g L−1 phosphotungstic acid, and of free amino acids were significantly (P<0.05) higher in the low-fat experimental cheeses than in the low-fat control cheese.  相似文献   

10.
Activation energy of flow (Ea) between 30 and 44 °C was calculated from temperature sweeps of cheeses with contrasting characteristics to determine its usefulness in predicting rheological behavior upon heating. Cheddar, Colby, whole milk Mozzarella, low-moisture part-skim Mozzarella, Parmesan, soft goat, and Queso Fresco cheeses were heated from 22 to 70 °C, and Ea was calculated from the resulting Arrhenius plots. Protein and moisture content were highly correlated with Ea. The Ea values for goat cheese and Queso Fresco, which did not flow when heated, were between 30 and 60 kJ mol?1. Cheddar, Colby, and the Mozzarellas did flow upon heating, and their Ea values were between 100 and 150 kJ mol?1. Parmesan, the hardest cheese, flowed rapidly with heat and had an Ea > 180 kJ mol?1. Ea provides an objective means of quantitating the flow of cheese, and together with elastic modulus and viscous modulus provides a picture of the behavior of cheese as it is heated.  相似文献   

11.
Low-fat Mozzarella cheeses containing 6% fat were made by pre-acidification of milk with citric acid to pH 6.1 and using encapsulated ropy or non-ropy exopolysaccharide (EPS) producing Streptococcus thermophilus. Moisture retention, changes in texture profile analysis (TPA), meltability and stretchability of cheese, and changes in colour, surface scorching and shred fusion were analysed after baking over 90 days (d). Control cheeses and those made from pre-acidified milk without EPS cultures had the lowest moisture content at 54.84% and 55.28%, respectively. Control cheeses were hardest and their meltability and stretchability were initially low. Hardness was reduced and the melt and stretch distances increased with time. When baked, control cheeses showed incomplete shred fusion. Pre-acidification reduced hardness and increased meltability. Capsular- and ropy-EPS were quantified at 30.42 and 30.55 mg g−1 of cheese, respectively, and increased moisture retention in pre-acidified cheese to 56.67% and 56.21%, respectively. These cheeses were softer and exhibited lower springiness. Greater meltability was observed initially but became similar to control cheeses after 90 d of storage. When baked after 45 d of storage, cheeses containing EPS producing cultures showed improved shred fusion, meltability and a reduction in surface scorching.  相似文献   

12.
Cheddar cheeses with the different fat contents were made in triplicate and ripened at 4°C for 30 d and at 7°C for the remainder of the 180-d investigation period. The cheeses were designated: full-fat (FFC), 300 g kg−1; reduced-fat (RFC), 219 g kg−1; half-fat (HFC), 172 g kg−1; and low-fat (LFC), 71.5 g kg−1. A decrease in the fat content from 300 to ≤172 g kg−1 resulted in significant (P<0.05) decreases in contents of moisture in non-fat substance and pH 4.6 soluble N (expressed as % total N), and increases in the contents of moisture, protein, intact casein and free amino acids. Reduction in fat content resulted in an increase in the volume fraction of the casein matrix and a decrease in the extent of fat globule clumping and coalescence. The mean values of fracture stress and firmness for the FFC were significantly lower than those of the RFC and HFC, which had similar values; the values for the LFC exceeded the limits of the test and were markedly higher than those of the other cheeses at all times. On baking the cheese, reduction in fat content resulted in significant increases in the mean melt time (time required for shred fusion) and apparent viscosity and a decrease in the mean flowability of the melted cheese. The stretchability of the FFC increased most rapidly and, at ∼15 and 30 d, attaining mean values which were significantly higher than those of the other cheeses. Thereafter the stretchability of the FFC decreased progressively to values that were significantly (i.e. at 150 d) or numerically (i.e., at 180 d) lower than those of the RFC and HFC. At ripening times ≥15 and ≤90 d, the stretchability of the LFC was significantly lower than that of the RFC, and significantly or numerically lower than the HFC.  相似文献   

13.
An experiment was undertaken to investigate the effect of milk fat level (0%, 2.5% and 5.0% w/w) and gel firmness level at cutting (5, 35 and 65 Pa) on indices of syneresis, while curd was undergoing stirring. The curd moisture content, yield of whey, fat in whey and casein fines in whey were measured at fixed intervals between 5 and 75 min after cutting the gel. The casein level in milk and clotting conditions was kept constant in all trials. The trials were carried out using recombined whole milk in an 11 L cheese vat. The fat level in milk had a large negative effect on the yield of whey. A clear effect of gel firmness on casein fines was observed. The best overall prediction, in terms of coefficient of determination, was for curd moisture content using milk fat concentration, time after gel cutting and set-to-cut time (R2 = 0.95).  相似文献   

14.
This study examined the presence of antimicrobial, antioxidant and antihypertensive peptides in three commercially available Australian Cheddar cheeses. Peptide extracts as well as fractionated peptide extracts were examined. Commercial cheese A peptides exhibited the greatest inhibition against Bacillus cereus and also commercial cheese A fractionated peptides greater than 10 kDa showed the highest inhibition against B. cereus. Commercial cheese A peptides also showed the highest inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a free radical used to measure antioxidant activity. All cheese fractionated peptides greater than 10 kDa demonstrated higher inhibition of DPPH after fractionation. Antihypertensive peptides were determined by inhibition of the angiotensin-converting enzyme (ACE). Overall, commercial cheese A had the lowest concentration required to inhibit ACE and commercial cheese A fractionated peptides lower than 5 kDa had the lowest inhibition after fractionation. These preliminary findings suggest that peptide extracts of three commercial Australian Cheddar cheeses exhibit antimicrobial, antihypertensive and antioxidant properties.  相似文献   

15.
Cheddar cheeses were manufactured on a pilot scale (500 L vats) with three different Lactobacillus helveticus strains, which showed varying degrees of autolysis, added as adjuncts to the starter. Autolysis of adjunct strains was monitored by reduction in cell numbers, level of intracellular enzymes released into the cheese, and by the consequent changes in the degree of proteolysis and concentration of free amino acids in the cheese. The flavour profiles of the cheeses at 6 months were also determined. Significant variation in viability of the Lb. helveticus strains, which showed a positive correlation with the indicators of autolysis, was observed. However, cheese manufactured with the most autolytic strain did not receive the highest flavour scores. The results indicate that whereas autolysis of adjunct strains is an important factor in Cheddar cheese flavour development, other factors also contribute to the overall flavour improvement observed.  相似文献   

16.
《International Dairy Journal》2005,15(6-9):921-927
Various foods may be used to deliver probiotic bacteria into the gastrointestinal tract; one such example is Requeijão, a Portuguese whey cheese. Survival and stability of Bifidobacterium animalis strains BLC-1, Bb-12, and Bo, Lactobacillus acidophilus strains LAC-1 and Ki, L. paracasei ssp. paracasei strain LCS-1 and L. brevis strain LMG 6906 inoculated into Requeijão, when exposed to simulated gastrointestinal tract conditions, were assessed. Homogenates of inoculated whey cheese in 0.85% (w/v) sterile saline water were exposed to a solution of hydrochloric acid (pH 2.5–3.0) and pepsin (1000 units mL–1) at 37 °C, and then to 0.3% (w/v) bile salts after 60 or 120 min of acid exposure. All bacterial strains retained their initial viable cell numbers. Bifidobacterium animalis strains Bb-12 and Bo, and L. brevis strain LMG 6906 exhibited the highest viable cell numbers when exposed to bile salts, whereas the other strains had variable death rates.  相似文献   

17.
A nisin Z-producing strain, Lactococcus lactis subsp. lactis biovar. diacetylactis UL719 and two nisin-sensitive cultures, Lactobacillus rhamnosus RW-9595 M producing exopolysaccharide (EPS), and Lc. lactis subsp. cremoris for acidification, were tested in pure and mixed cultures during milk fermentation. The mixed culture of the three strains showed a higher acidifying capacity at 34°C and 38°C, even though populations of Lc. cremoris were largely reduced compared with pure cultures. Bacteriocin production was 3.1–4.6-fold higher in mixed cultures than for pure cultures of Lc. diacetylactis UL719. These data can be explained by commensalism behavior relying on high proteolytic activity of Lc. cremoris and autolysis and nisin Z-induced lysis. In mixed culture, EPS production was 3-fold lower than for Lb. rhamnosus RW-9595 M pure culture. Our data showed that this strain combination, with nisin-producing and sensitive strains, can be used in mixed cultures for manufacture of fresh cheese with improved functional properties.  相似文献   

18.
Cheddar cheeses were produced with starter lactococci and Bifidobacterium longum 1941, B. lactis LAFTI® B94, Lactobacillus casei 279, Lb. paracasei LAFTI® L26, Lb. acidophilus 4962 or Lb. acidophilus LAFTI® L10 to study the survival of the probiotic bacteria and the influence of these organisms on proteolytic patterns and production of organic acid during ripening period of 6 months at 4 °C. All probiotic adjuncts survived the manufacturing process of Cheddar cheese at high levels without alteration to the cheese-making process. After 6 months of ripening, cheeses maintained the level of probiotic organisms at >8.0 log10 cfu g−1 with minimal effect on moisture, fat, protein and salt content. Acetic acid concentration was higher in cheeses with B. longum 1941, B. lactis LAFTI® B94, Lb. casei 279 and Lb. paracasei LAFTI® L26. Each probiotic organism influenced the proteolytic pattern of Cheddar cheese in different ways. Lb. casei 279 and Lb. paracasei LAFTI® L26 showed higher hydrolysis of casein. Higher concentrations of free amino acids (FAAs) were found in all probiotic cheeses. Although Bifidobacterium sp. was found to be weakly proteolytic, cheeses with the addition of those strains had highest concentration of FAAs. These data thus suggested that Lb. acidophilus 4962, Lb. casei 279, B. longum 1941, Lb. acidophilus LAFTI® L10, Lb. paracasei LAFTI® L26 and B. lactis LAFTI® B94 can be applied successfully in Cheddar cheese.  相似文献   

19.
Salt changes in Cheddar cheese made intentionally with poor salt distribution and in model systems have been determined. Salt equilibrium was not attained within blocks of Cheddar cheese during 24 wk ripening. Diffusion of salt from milled salted curd into unsalted curd in a model system likewise was very slow with a steep salt gradient still existing after 56 d.In contrast, salt diffusion in 2 × 2 × 6-cm pieces of Cheddar curd was rapid with equilibration in about 48 h. Also, salt diffusion into unsalted discs (7.4 diameter by 2 cm thick) of curd from salted discs of curd was rapid.Brine salting of Cheddar cheese showed that the diffusion coefficient was directly related to moisture content and was consistent with those obtained in other cheeses.Reasons for a slow rate of salt equilibration in nonbrine-salted Cheddar cheese are proposed.  相似文献   

20.
A process for incorporating whey solids into Cheddar cheese was evaluated. Whey was concentrated by ultrafiltration to between 9.8 and 20.3% solids (4.3 to 7.1% protein) and then heated at 75°C for 30 min. Return of this concentrate to cheese milk increased average yield 4.0% at constant cheese moisture. Cheese made by this procedure was lower in fat than control cheese and had a higher moisture content. Setting time was shorter, and acid development was faster. The pH was lower than that of the control cheese. Specific body, texture, and flavor characteristics were identified. Acid was the only flavor defect more prominent in experimental than in control cheese. None of the specific body or texture characteristics was significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号